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Abstract

We present an overview of the most important prafgo$or humanoriented
query languages for relational databases, basddzag sets theory. To highlight
important issues concerning communication with lolagas, we propose two tax-
onomies: the first taxonomy deals with flexible gunguages in crisp @lonal
databases and the second deals with flexible daeguages in fuzzy rational
datbases. They can help database designers and usknstand and select the
best approaches to solve their jems.

Key Words. fuzzy querying, flexible querying, relational daégse managnent
systems, imprecise information, fuzzy logic.

1 Introduction

Managers rely more and more on the use of databasgstain insights and up-
dated information on activities of their institutmand companies. More and more
people, from experts to naxperts, are depending on information from data-
bases, to fulfill everyday tasks, notably thosetesl to decision making. Basi-



cally, the content of a database describes selesgects of theeal world rele-
vant for a given company, institution, etc. Ofteny knowledge about the entities
represented in a database as well as our preferendesndmat should be retrieved
from a dasbase are imperfect or imprecise. This raises atigmesf a proper
modeling of imperfect information in the context ddtabase management sys-
tems(DBMSS).

The focus of this paper is on flexible query larges (FQL) for databases that
are based on fuzzy sets theory. Since there arg omanributions in this field, we
propose two taxonomies to help and guide databesmymers andsers. These
taxonomies address the FQL in crisp relational lsegas and in fuzzy ational
databases, respectively. Approaches mentionedeisettaxonomies are not ex-
haustive in terms of literature, which is huge, thaty are quite represetive. We
believe that these two taxonomies provide a betteletstanding of the field and
can help select the best approaches to solve gppaiblems.

Dubois and Prade (Dubois and Prade 1997) enumiratisvo reasons for us-
ing fuzzy sets theory (Zadeh 1965) to make queryiage flexible. First, fuzzy
sets provides a better representation of the upeeferencesFor exanple, in a
query asking for some apartment “not too expenaiwe not too far from down-
town”, the user may feel much more comfortable gidiinguistic terms instead of
precisely specified numerical constraints. Moreptlese linguistic termsxpress
exactly what the preferences of a user are; fomgka when an interval to which
the price has to belong is imprecisely specifielde Tinguistic terms clearly sug-
gest that there is a smooth transition betweenpaabke and ureeptable prices.
Thus, we can have a price definitatyatching or definitely not matchingthe
user’s request, but alsoatching to a certain degre@dnother important gpect of
using fuzzy sets theory is a direct consequendbeoprevious. Namely, as soon
as we have matching degreeanswers can be ranked according to the users’ re-
quirements (Dubois and Prade 1997).

According to many authors such as Bosc and PiBwsg and Pivert 1992,
1997), Kacprzyk and Zadrozny (Kacprzyk and ZadroA$95), Takahashi
(Takahashi 1995), Medina et al. (Medriaal. 1994), etc. there are two main lines
of research in the use of fuzzy set theory in tlBMS context. The first one as-
sumes a conventional database and, essentiallg)apesva fuzzy querying inter-
face using fuzzy sets, possibility theory, fuzzgitp etc. Among authors who
have conttuted to this research are Bosc and Pivert (Bosdarett 1992, 1995;
Bosc et al. 1999), Dubois and Prade (Dubois andePi®97), Tahani (Tahani
1977), Takhashi (Takahashi 1991, 1995), Kacprzyk, Zadrozny Ziolkowski
(Kacprzyk and Ziolkowski 1986; Kacprzyk, Zadroznydadiolkowski 1989;
Kacprzyk and Zadrozny 1995), Ribeiro and Moreirébéito and Moreira 1999).
In Section 4, we will describe their works and pre@ a taxonomy for these ap-
proaches. The second line of research uses fuzpgssibilistic elements for de-
veloping a fuzzy database model that accountsniigrécision and vagmess in
data. Here, of course, querying conges also an important element of a model.
Some relevant concepts areegented, e.g., in (Baldwin et al. 1993; Bosc and



Pivert 1997;Bosc and Pivert 199 Buckles and Petry 198Buckles et al. 1986;
Galindoet al. 1998; Galindet al. 1999; Medina et al. 1998rade and Testemale
1984; Prade and Testemale 19&henoi and Melton 198%henoiet al. 1990).
These approaches aresdribed in Section 5.

There are also other issues in the use of fuzzy thebry in relational data-
bases such as efficiency of fuzzy queries execufimry functional dependen-
cies/constraints, fuzzy logical databases, but #reybeyond the scope here.

In Section 2, we review the fundamentahoepts of the relational data model
which includes its main querying formalisms: thiatienal algebra, the rational
calculus and the SQL language. Next, imt®@a 3, we review the main concepts
of fuzzy sets theory that will be used in this paj@ections 2 and 3 gvide the
theoretical base to make the paper-selftained. We examine in detail the main
approaches proposed in the literature that areerord with the first line of re-
search mentioned above, i.e. flexible query langadgr the crisp retional data
model. We propose a taxonomy to organize theseoappes, thusesulting in an
overall picture of the main research done. The gast, Section 5, is devoted to
the second line of research mentioned above hieefléxible query languages for
fuzzy relational databases. Again, a taxonomy fifferéent approaches is pro-
posed. Finally, in Section 6, we present some csiarhs about this work.

2 Brief introduction to the relational data model

A relational database is a collection of relatiodsfined according to the rela-
tional database model (Codd 1970). A relation mayibderstood as thelation
schemaor therelation instanceThe relation schema has the following form:

R(A:D,, ...,A:D) (1)

whereR is the name of the relatioA, (1 < i < n) is thei-th attribute (which also
may be calleccolumnor field) andD, (1 < i < n) is thedomaincorresponding to
the attributeA. EachD, defines a set of values being possible valuearcattrib-
ute. Often, we refer to a schema by just indicatirggset of attbhute name$R(X),
X={A,...A}.

A relation instance of given relation schema istdftuples each composed
of values of the attributes belonging to the relachema:

{<d,..,d>|@d,0OD),...d0OD)} 2

whered (1 <i < n) is the value of the tuple corresponding to atiiéoA; this
value must belong to the g8t Usually the termelation instances abbreviated
to relation whenever there is no confusion with other aspeafctise relation.

A relation is here denoteq, its n attributes are denoted, ..., A andD,, ...,
D, are their domains. Tha tuples of a relation are denotgd...,t andd, repre-
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sents the value of ttjeth attribute in tuplé. Relations are often referred totas
bles with columnsandrows corresponding to attributes and tuples of #hation.

The typical operations on data in a database iedchgkrtion deletion updat-
ing andretrieval. The latter is the most important for our considiens. Usually
not all data is retrieved but only the datetchingcertain criteria is required.
From the operational point of view there are twprapches to desing aquery
languagei.e., a language allowing to express the rangemfired data. The first
one consists in the use of a restricted versidghepredicate/relational laulus of
mathematical logic to specify the requirementsrétgeved data should meet. In
this approach the actual way of data retrievalospletely left to the atabase
management system employed. In the second appraagpery is aejuence of
operations that should be executed on the databasbtain the equired data.
These operations correspond to the underlying ai@el, i.e., correspond to the
operations in relational algebra. From the theoattpoint of view both ap-
proaches are equivalent in the sense of their sgjwe power. In Section 2, we
present a brief overview of both formalisms. Inatilnal database management
systems implementations usually a hybrid approachdbpted, notably exempli-
fied by the SQL language.

Whichever querying approach is assumed, the mgxtriiant part of a query is
a set of conditions (criteria) of which rows wikk kelectedto be included in an
answer to the query. Thus, it is interesting tagtthe retrieval process from the
perspective where a query is meant to define aotye¢ of data to beetrieved.
Then, during the retrieval process for every romatching degreef its content
and the prototype is calculated. In the classidapcapproach this matching de-
gree is binary: a row matches the prototype or imoteal situations, the descrip-
tion of the prototype may be imprecise and thisi$ei@ a partial matchingedree.
This line of reasoning, adopted by many authorgyiges an interesting basis for
the analysis of flexible (fuzzy) querying languagshich we will explore next.

To clarify the understanding of some proposalshim literature, we will use,
whenever necessary, the following relational scheraanple:

Employeegtemp, name, #dep, age, job, salary, commissi@am)to 3

Departmentgtdep, budget, size, city) 4

with the instances of relatiosmployeeandDepartmentgiven in Fig. 1

This example will also make possible to explainaisimple way, the main
concepts of relational algebra and relational calculus



2.1 Relational Algebra

Relational algebra defines a set of operations &mipulate data in reiions
(Ramakrishnan and Gehrke 2000). The list of baserations includes:

» the usual set theoretic operations includinguhien, differenceandCartesian
product The Cartesian product is slightly modified totfie database context
and produces a relation whose scheme is a unidheofchemes of the argu-
ment reétions.

+ theselection g,(R), gives the tuples of relatidR that satisfy a Boolean expres-
sionP, which is defined over the schemeRof

+ theprojection 17(R), gives a relation obtained when all attributesrfrthe set
X-Y are removed, wher&(X) is the scheme of the relatiéh Thus, the scheme
of the resulting relation comprises only a subéef the set of attbutes ofR
and some tuples of the original relation are atsnaved (those with identical
values of the attributes belongingYh

#dep budget size city

1 $13000030 S. Francisco
7 $90000 20 New York
9
8

$11000011 Washington
$50000 7 S. Francisco
3 $40000 11 New York

#emp name #dep age job sal commissiotown
22 Athur 1 30 programmer $1500 $500 New York
29 John 3 35 accounter $1800 $400 Boston

31 May 7 40 salesmanager  $2300 $200 San Francisco
32 Peter 1 39 systemsanalyst $2000 $300 New York

58 Barbara 7 39 marketing manager$2500 $500 Los Angeles
64 May 7 27 product manager $2000 $400 New York

71  Michael 8 30 research assistant $1500 $100 S. Diego

74 Jude 9 35 secretary $1600 $300 New York
85 Horatio 9 50 technical assistant$2400 $400 New York
95 Ken 3 55 controller $2800 $500 Boston

Fig. 1. Example of a crisp relational database

Other operations can also be used but they coulekpeessed in terms of the
five operations mentioned above. For example, tbeular join opegtion,
join,g.(R,9, is a combination of the Cartesian product amdsilection opetion.
Another operation, often discussed within the stthpd “fuzzification”, is thedi-
visionR + S If X andY are the schemes BfandS, respectively, withy 0 X, then
R + Sgives the maixnal (in the sense of ") relation T, having the schem&-Y,
such thalf x SO R, i.e.;
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R+S={t:0ulS (tu) OR} (5)

The division operation may also be expressed amination of the projec-
tion, Cartesian product and difference operations.

We complete this section by providing an exampla glery expressed in the
relational algebra. The query (Bosc and Pivert 1995)

Q1 - Find the employees younger than 35 who work in gadment whose
budget is higher than $100000

may be expressed in relational algebra as:

Temp( JOINEmpi#dep=Dep#dep(T age<3s (EMP), Obudges10000d PEP)) (6)

2.2 Relational Calculus

Relational calculus comprises domain relationatwak (DRC) and tuple rela-
tional calculus (TRC) (Ramakrishnan and Gehrke 20DRC and TRC are de-
clarative query languages based on the-firder predicate logic. The main idea
is to describewhat is sought rather than to define how to gehit similar fash-
ion as in the relational algebra.

Next, we briefly review the DRC language becauss the base for several
flexible query languages (FQLSs) described in Secticansd45, respectively.

A DRC query is an expression based on the firstropiedicate calculus lan-
guage. The general form of such a query is asvicli

{(0%) 1@(%-0%) } (7)

where@(x,,...,x) is a formula of the language. An answer to suduery is a set
(possibly empty) of tuplesaf,...,a) such that when substitutiregs for x’s in @ a
true formula is obtained. The building blocks offfulae areatomic fornulae. In
the DRC two classes of atomic formulae are uswhdiiinguished:

R(X,, X ++1y X)) )
X, 0%

wherex (1< i< n) is either a domain variable or a consté&nis an n-ary predi-
cate ;0 is a comparison operator from the set {<, ><=, #}.
Finally, a formula is:



¢ an atomic formula, (9
® "ll’, ‘l’l g LAU2= L»U1D L»Up %D wz

s Ox (¢ (¥)

s Ox (g)

wherey, ¢, @, are formulas angy(x) is a formula containing a domain variable
x. An example of a DRC query equivalent to the eXenopthe relational algebra
query of Section 2.1 (see Hi).is the following:

%) | DKy, X3, Xy, Xs5 X MP(X;, X5, Xg: Xg.--.) U X4 <35 0 (10
R T O L DEP(%g, X,-+) O X6 >100000 0 X = X,

In the tuple relational calculus (TRC) we use tietax similar to Eqs(8)-(9)
but replacing the domain variables with tuple Valea. For exaple, (10) may be
expressed in TRC as:

{t |t 0 Employeedit.age < 3510s [ Departmentsg#dep = 11
t.#depls.budget > 100000)}

2.3 SQL

SQL is a de facto industry standard command langéagthe relational dabase
management systems. SQL has commands to deal hébpacts concemng the
creation, maintenance and use of a database suble aseation of tables, inser-
tion of rows, querying the database, security isse¢c. In this stion, we are
only interested in what SQL provides for queryingadabase.

The syntax of a basic query in SQL is (Ramakrisharach Gehrke 2000)

SELECT select_list (12
FROM from_list
WHERE conditions

Such a query retrieves required data from somegadnhd builds a new table.
The select_listspecifies the expressions (often, just column maméose values
are to populate columns of the new table. The coluosed in these expressions
have to be listed in thieom_list The expressions of the SELECT clause are cal-
culated only for the rows, from the FROM clauset ttneet theonditionsspeci-
fied in the WHERE clause. The condition is a Boolemmbination of atomic
condtions created using the logical connectives AND,, O®T. Each atomic
condition has the following syntax: “expressionexpression”, where “op” is one
of the comparison operators (<, <=, =, <>, >=, njl dexpression” is a damn
name, a constant or an expression (numeric expressistring exprssion).
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A basic query (12) corresponds to an expressigalational algebra involving
the operations of projection, selection and Caategiroduct. For example, the
following query:

Q2 - Find the names and age of all employéggxpressed in SQL as:

SELECT name, age (13
FROM Employees

and the result is a table with two columns (name,agnd as many rows as in the
tableEmployees

A way to extend the basic form of a query is tonssted querieésubqueries).
Usually, the nested queries are used along withséteoperators IN, NOT IN,
EXISTS, NOT EXISTS, op ANY, op ALL as exemplifieq the query:

Q3 - Find the names of employees who work in New @k be expressed as:

SELECT name ()]
FROM Employees
WHERE #dep IN (SELECT #dep

FROM Departments

WHERE city = ‘NeYiork’)

The subquery retrieves the set of departmentsateatocated in New York.
The main query retrieves the names of employeds that their department is in
this set. The set operator IN allows to test wheshealue belongs to a set or not.

3 A brief introduction to fuzzy sets theory

Fuzzy sets theory (Zadeh 1965) is an attempt toefnaxl inherent vagmess of
natural language. Almost any concept expressediaral language, like young
people, implies that elements of the universe stdlirse (the particular people)
are young to aertain degreeNote that the concept gbungis context depend-
ent. Such a graduality is modeled by a membershiptionp, that for each per-
son x assigns a valug,(x) from the nterval [0,1], representing the degree to
which persorx belongs to seA. In our examplejl,,,.(X) represents the degree to
which x is consilered young.

The cardinalityA| of a fuzzy sef, defined on a finite universe 96tis given
by the sum of the membership values of all elemehiin A, and is sometimes
called scalar cardinality to distinguish from ottigpes of cardinality (see e.g.
(Liu and Kerre 1998)):



A= 3 ualx) (15)
xOX

The relative cardinality4]| of a fuzzy sef, in a finite universe seX, is de-
fined by:

||'°4| :% (16)

where X] is the cardinality of the universal sét
The counterparts of the classic operations of tmeptement, union and inter-
section for fuzzy set\ andB, are defined as follows:

p--'A(X) =1- p‘A(X) (17)
HADB(X) = max [‘lA(X)! HB(X)] (18)
Hana(X¥) = min [, (%), k(X)) (19

The classic correspondence of set theoretical tipesaand logical connec-
tives is preserved. Thus, (27)9) provide also interpretation for the connedive
of negation, disjunction and conjunction.

Several fuzzy implication operators have also bgeposed in the literature
(Fodor and Yager 2000). The most commonly used are:

KleeneDienes: 1(x,y) = max(1-X,Y) (20

Lukasiewicz: 1(x,y) = min(1,(1:x+Yy)) (21

Godel: 1(xy)=2 " X<V (22)
[y otherwise

Goguen: I(xy) = min(y/x1) (23

Fuzzy sets theory was conceived primarily as a &ism to represent the
meaning of natural language expressions. In thieviolg subsections we will
briefly review some concepts relevant for this topi

3.1 Linguistic variable
Basically, a linguistic variable is a variable as@ug linguistic values instead of

numerical values. Formally, a linguistic variabafeh 1987) is a quimple H,
T, U, G, M whereH is the name of the variabl&,is the set of linguistic names
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(calledtermg that can be assigned to the variaklds the universe of vaes that
are used to define the meanikigof each linguistic value iff; andG is a gram-
mar that is used to specify the valulewsed inT. The meanindg/(X) of a termX
O T, is specified as a fuzzy subsetUn The terms may batomic termssuch as
“yound or composite termswhich result, for example, from applyimgodifiers
(see next subsection) and logical connectives toniat terms. For example
(Zadeh 1987), a linguistic variable callage(H = age) may have the term Jet
{old, very old not old more or less youngjuite youngnot very old and not very
young ...}, which, for simplicity reasons, isefined here in an informal way,
without defining the grammaa. In this exampleyoungandold are the atomic
terms. The universe of discourse mightUe= [0,100] and the meaning of the
termyoung M(young, could be given by a fuzzy set, such that:

u[o,25]

i,
_ _ i ,udu (24)
l’lM (young) (U) %4_ M BZD . u 0 ]25,100]
O 5 O H

3.2 Modifiers

A linguistic modifier can be modeled by using arexgtor that acts on the fuzzy
set corresponding to the linguistic term to whibk modifier is applied. For ex-
ample (Schmucker 1984), the linguistic modifiry in the linguistic expression
“very young” intensifies the meaning expressedHhsy fuzzy termyoung Hence,
the effect ofvery is to decrease the membership of the values bigigrtg the
fuzzy set YOUNG. The concentration operator cardpee this effect:

Hoons(®) = KA (4) (25

Conversely, the dilation operator can be used &inthg modifiers, as for ex-
ampleslightly and it is modeled as:

IJDIL(A)(X): R (x) (26)

Other usual modifier isot that is modeled by the complement operator. There
are many more operators used to model linguistidifiens, cf., e.g., (Kerre and
De Cock 1999).
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3.3 Fuzzy (Linguistic) Quantifiers

Classical logic recognizes two quantifiers exprggghat all objects posses cer-
tain property general quantifier) or that at least one object possessemin
property (existential quantifier), respectively. wiver, natural languages offer
many more forms of quantifiers. For example, qoitien one says thahostof
the objects possess certain property. Basicalbretlare two types o fuzzy (lin-
guistic) quantifiers (Zadeh 198%ager 1994)absolute- such as “apprdamately

3" and “several” andproportional such as “most” and “a few”. There are also
two general types of propositions referring to lirggic quantifers:

1. Q X'sareA’s (type 1)
2. Q B'sareA’s (type Il)

whereQ is a linguistic quantifier, anéd andB are fuzzy sets modeling certain
fuzzy properties of the objects of the univeXsdn what follows we briefly dis-
cuss how linguistic quantifiers may be formalized.

Zadeh'’s calculus of linguistically quantified propo sitions

Zadeh (Zadeh 1983) proposed an interpretationuzryf quantified statements of
both types | and Il based on the concepts of calign(Eq. (15)) and redtive
cardinality (Eq.(16)) of a fuzzy set. A fuzzy propositio X's are A’'s has the
truth degred that is computed using the following equationsd@a1983)

T = Queoul IA) = Qa2 Ha(X)) (27)

whereQ is respectively an absolute and a relative quantiFor fuzzy proposi-
tionsQ B’sareA’s, where bothA andB are fuzzy sets, we have (Zadeh 1983)

T = Qupeonie (AN BI) = Qpeoiie (2 HA(X) T (X)) (29

o HANBIE o {5 kals)Oks(x)
T QrelatlveH |B| H Qrelauve@ Zi s (X|) E

(29

OWA operators and Yager's calculus of linguisticall y quantified
propositions

Yager (Yager 1994) proposed the use of Ordered hteigAveraging (OWA)
operators for the evaluation of linguistically gtified propositions to oweomee
some problems of the Zadeh'’s proposal (see in (BoddPivert 1995) an exgle
comparing Zadeh’s approach with Yager's approaghn) OWA operator of di-
mensionn is a mapping that performs an aggregation ofiitargumentsa,, ..., a,
(Yager 1994), such that:

Page 11



n
f(ag,...an) = Y bjw; (30)
=1

wherea [ [0,1], b is thej-th largest from among, andw, (w, O [0,1]) are
weights such tha}, w = 1. The classical “AND” and “OR” may be expressed
special OWA operators:

forw, =1 andw = 0 (Jj <n) we obtairf(a, ...,a) =b,=min a (31
forw, = 1 andw, = 0 (Jj >1) we obtairf,(a, ...,a) =b, = maxa,

Moreover, any OWA operator lies somewhere betwbherf®R” operator and
the “AND” operator (Yager 1994) in the sense that:

min a < f(a, ...,a) <maxa (32

It is also possible to define an OWA operator whigly be interpreted as a
linguistic quantifier. Yager (Yager 1994) proposedcheme of defining an OWA
operator corresponding to a linguistic quantifiertie sense of Zadeh. Namely,
starting with a linguistic quantifig® that is monotone and regul&(Q) = 0;Q(1)
= 1) we set the weights of corresponding OWA operas fdlows:

\Ni = Qre\at\ve(i/n) - Qrelative((i-l)/n) u i:1’ L (33)

Then, the degree of trufh of a quantified propositionQ X's areA” is com-
puted using this OWA operator (Yager 1994)

T=1 (%), - kX)) (34)

3.4 Possibility distributions

Consider a vague propositioX is young”. This is an imprecise proposition be-
cause it does not assign a particular valueXfémore precisely, foK's attribute
age. Instead, it associates, with each possible vafu¢its possibility degree, a
number in the interval [0,1] (Klir and Folger 1988Ye can say that propitisn p

= “Xis young” induces possibility distributiort (the notatiorrt, is often used to
indicate what variable is considered) on the doméihe attributeage

Xis young- 1= YOUNG (35

or, equivalently:
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Oubu  1r(u) = Kyoue(U) (36)

that is, the possibility that a certaiilU is an actual value of is equal to ther's
membership degree to the fuzzy set YOUNG, which etothe linguistic term
young Knowing the possibility distributiom, we may be also interested in de-
termining what is the possibility th&ts value belongs to a sAf1U. This leads to
the concept of thpossibility measurd.e., a functioril such that:

M: 2 - [0,1] (37

From the postulated properties of possibility meestt is assumed that (in
fact, usually we start with the concept and praperof the possibility measure
and only then the notion of the possibility distition is introduced):

Mn (A) =su pn(u) (38
utdA

The possibility measure alone does not tell us ghabout the location of the
actual value of X: outside or inside Thus, it is usually argued that it should be
accompanied by the possibility measure of the cempht ofA. More precisely,
the necessity measuréd|, is defined as, expressing the “impossibility” oé thet

A:
N(A)=1-n(A)= inf r{u) (39)

The formulae of Eq938)-(39) are extended to the case whare a fuzzy set in
the fdlowing way:

Posz{x is A) =M (A) = sEuUpmin(n(u), u A(u)) (40
and:
NedX is A)= N(A)= inf max(1-7r{u), 4 (U)) (42)

Now, if we know that the possibility distributiorf the X's value ismt then the
degree to which the actual valueXobelongs toA (often denoted asx'is A”) be-
longs to the intervalN(A), M(A)].

Eqgs.(40)-(41) for the possibility and necessity measuredaeetly enployed
when the matching degree is computed in the cordéxfuerying possilistic
fuzzy databases see Section 5. Actually, the interpretation of enadvanced
gueries calls for more sophisticated formulae. Namigius assume that we have
two variablesX andY, defined on the same univeldeand we know the possibil-
ity distributions of their valuesit and1t,, respectively. The question is: what is
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the possibility that the actual values of thesaaldes are equal. In order to an-
swer this question esistently we proceed as follows. First, we obsehag 1T,
andrr, jointly represent a possibility distributiog,, onU x U:

T, (Uw) = min (,(u), T(wW)) (42)

Second, the possibility (necessity) measure agsaciaitht, will be denoted
M,, (N,,). Thirdly, the answers to our question are theieslof the possibility
and necessity measures, for the set of pairs ofizdé elements frond, i.e.,

Pos{X = Y) =M XY({(u, u): ud U}) = L?éJUpmin(nX (u) oy (u)) (43
Nec(X = Y) = NXY({(u, u): uu }) = LHJ max(l— Ty (u),l— iy (u)) (44)

In Section 5, we discuss the Ed{40)-(41) for a more general case, when,
roughly speaking, the “is” and “=" operators agplaced with other crisp or fuzzy
relational operators.

Now, we would like to distinguish another concepeful in the context of a
fuzzy database querying: tip@ssibility distributions’ similarity If we know the
possibility distributions for two variableX,andY, we can be interested in €iimg
out how similar both distributions are. Similarisy meant here in a very broad
sense. Obviously, Eq43) provide an assessment of this similarity, but othe
measures are also applicable. In Section 5 we shsttiis concept in more detail.

3.5 Fuzzy Relations

A crisp relationR(x,, x,, ...,x,) defined on crisp set$, X,, ..., X, is a subset of the
Cartesian produck, x X, x ... x X . Similarly, afuzzy relatiorR is a fuzzy set de-
fined on the Cartesian produ¥t x X, x ... x X. The membership degrepgx,,
X, ..., X) represent the strength of the relation betweeretaments of the tuples
(X, X, ..., ). In the relational database terminology we waly shatR is defined
over schemaX,, X,, ..., X).

The composition of two binary crisp relatioR¢X,Y) and Q(Y,Z), denoted
P(X)Y) = Q(Y,2), is a crisp binary relatioR(X,Z) such that:

RX2)={(x20 XxZ|OydY (xy) OPO(,2 O Q} (45

The composition of two fuzzy binary relatioR¢X,Y) and Q¥,2) may be de-
fined in several ways. The most commonly used difirs are the following
(Klir and Folger 1988)

Hp.o(x.2)= max min|up (x, ), 4o (v, 2)] (46)
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e 2)= max{p ) (. 2) @
yay

respectively for maxnin composition and magroduct composition.
A fuzzy relationR defined onX x X, verifying the following properties: (Klir
and Folger 1988)

1. reflexivity. OxO X, p(Xx) =1 (48
2. symmetry Oxy O X, pa(Xy) = Ha(Y:X) (49)
3. maxmin transitivity 0x,z 0 X, Y. (X,2) = (50)

* maxmin[u(x.y), Ue(y.2)]
yOy
is called asimilarity relation R(X,X). If R(X,X) is only reflexive and symmetric
thenR s called groximity relation(Klir and Folger 1988)

An algebra for fuzzy relations

Relational algebra (see Section 2) may be extendedder to provide the same
type of operations for fuzzy relations. Next, wegant the definitions for the op-
erations of such an extended algebra (Bosc eB8P)1 The set operationmion,
intersection differenceand Cartesian producof two fuzzy relationdRk andS are
direct applications of operations on fuzzy sets; i.

H z0s(X) = max (1(x), LX) (51)
Hzn () = min (%), K(3)) (52
He () = Hgns (®) = min @1 (x), I- u(x)) (53
H e cs(Xy) = min ((%), Ks(Y)) (54)

wherex andy are tuples of relation® andS. Moreover, the operatiorselection
projectionandjoin are defined as:

Hop(R) (x) = min(ug (x). tp (x)) (55

Hr, (R)(Z): maxy r(zv) (56)
whereP is a fuzzy conditionz andv are tuples defined over sche@mandV, re-
spectively, such tha 0 V =X andZ n V =[; A andB are subsets of andY re-

spectively, and is a fuzzy comparator, i.e. it is a fuzzy relatidefined on seta
andB, such aspproximately equal

Page 15



Let us briefly explain the three formulas abovest:ifor selecting the tuples
in a fuzzy relatiorR that satisfy a fuzzy conditioR, we compute the matching
degree of each tuple agaistthat is,p.(X). The membership degree of eacim
the resulting relation must take into account tvatues: L (x) and its original
membeship degreql (). Projecting a fuzzy relatioR through one of its sub
schemaz, that is,Z [0 X, requires forming the suioiplesz corresponding td, and
consideing for their membership degrees the highest meshiierdegree of the
tuplesx that includez as a sutiuple. Finally, joining two fuzzy relatiorR andS
using a fuzzy conditio®\ 6 B requires concatenation of pairs of tupkeandy.
The membership degree of each new txyles the minimum of its matching de-
gree related té 6 B and the original membership values of tupiesdy.

The relational algebra operation of division (seg (&) can also bex@ended
using the fuzzy sets (fuzzy relations) insteadhaf trisp sets (crisp @ations).
Dubois and Prade (Dubois and Prade 1997) propbseidiowing extasion:

|J~R+s(t) = mIrL |Js(u) - UR(tru) (57)

where the symbol. denotes a fuzzy logic implication.

3.6 PRUF

Above we summarized how the semantics of propositimay be expressed in
terms of possibility distributions (more generalbgssibility theory). So far, we
only discussed the simple propositions exemplifigcEqg. (35), however, natural
languages are syntactically much richer. Zadeh €Aatio78) classified fuzzy
propositions of natural languages in five typesige fuzzy propositions (type 1),
modified fuzzy propositions (type Il), composed Ayuzpropositions (type Ill),
quantified fuzzy propositions (type 1V), and quiglf fuzzy propositions (type V).
He proposed a semantic interpretation for each ityperms of the possibility dis-
tribution in a way analogous to E@®6). In Fig.2 below we collected exaples of
propositions belonging to each type and the cooeding induced possibility dis-
tribution formulation.

Type Example Induced possibility distribution

I Maria is young .= YOUNG

Il Bob is very tall M= VERY_TALL

11 Maria is youngand Bob is very T, ....= YOUNG x
tall VERY_TALL

v Moststudents are young T uniege = MOST, YOUNG

\% It is quite true (probable or im- 1 = QUITE_TRUE, YOUNG
possiblé that Maria is young

Fig. 2. Classification of fuzzy propositions (Zadeh 1978)
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We may observe that: QUITE_TRUE, YOUNG denotes finaction
Houre truelMvoune(X)); YOUNG x VERY_TALL is a Cartesian product of fuzzy set
YOUNG and thenodifiedfuzzy set VERY_TALL; and MOST is a quantifier

4 Taxonomy of flexible query languages (FQLS) for crisp
relational databases

In this section we propose a taxonomy for the nmmoposals found in the litera-
ture related to FQLs for crisp relational databa3é® purpose of proposing this
taxonomy is to offer a structured view about thgidaand to highlight main dif-
ferences and similarities between various appraadharther, we believe that this
taxonomy can offer some guidance and clarificatibout the most relevant pro-
posals in this research area.

4.1 Taxonomy of FQLs for crisp databases

In Fig. 3 we present the main approaches in this topic grdup four categries.
Group 1, denotedbasic fuzzy predicatesncludes the first approach that used
fuzzy predicates in queries. Group 2, dendkexible aggregation operatoypre-
sents the proposals that study flexible aggregaifquartial matching degrees via
linguistic quantifiers and importance weights. Gr@j denoted SQL exteions
presents proposals introducing elements of fuzeyqherying paadigm in SQL.
Finally, Group 4, denoteBRUF and flexible queryingdescribes proposals that
focus on the interpretation of natural languageresgions for the purposes of
guerying.

FQL Taxonomy Proposals of FQLs for crisp relational databases

G1. Basic fuzzy predi; P1. Tahani (Tahani 1977)
cates

G2. Flexible aggregation | P2. Kacprzyk, Zadrozny and Ziolkowski (Kacprzyk
operators and Ziolkowski 1986;Kacprzyk, Zadrozny and
Ziolkowski 1989)

P3. Bosc and Pivert (Bosc and Pivert 1993)

P4. Dubois and Prade (Dubois and Prade 1997)

G3. SQL extensions P5. (SQLf) Bosc and Pivert (Bosc and Pivert 1992;
Bosc and Pivert 1995; Bosc et al. 1999)
P6. (FQUERY) Kacprzyk and Zadrozny (Kacprzyk
and Zadrozny 1995)

G4. PRUF and flexible P7. Takahashi (Takahashi 1991; Takahashi 1995)
guerying

Fig. 3. Main approaches to Flexible Query Languages (F@irs)
crisp rektional databases
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Since the SQL's SELECT command is the standardhferquerying of crisp
relational databases, we will also use it for tHagve purposes and to clearly dis-
tinguish the taxonomy groups. The first two grog4-G2) of proposalshasic
fuzzy predicateandflexible aggregation operatordiave a theoretical chatar
and essentially extend the WHERE clause’s condiibthe SELECT command,
by incorporating linguistic (fuzzy) terms and usiihgxible aggregation operators
(connectives).

The third group (G3) of proposalSQL extensionscomprises more practical
approaches that embed the fuzzy predicates inytitaysof the standard SQL. For
example, one of the proposals (FQUERY for Accesacfifzyk and Zadrozny
1995)) implements fuzzy predicates in the WHERRisdaand another proposal
(SQLf (Bosc and Pivert 1995)) specifies a new lagguthat extends SQL by in-
corporating fuzzy predicates not only in the WHERIBuse but wherever it
makes sense. The fourth group (G4) of proposailiral language querying lan-
guages instead of modifying the SQL's SELECT commandpases a set of
natural language query types that includes an adecgubset of fuzzy proposi-
tions. The poposals included in G4 are based on the PRUF lamgy(&gdeh
1978), and the mismatch between the natural larguagries and inforation
stored in the crisp relational database is bridgettanslation rulesthat perform
the respective convsion.

Next, we will present a summary of the proposalgh®y authors listed under
each group of the taxonomy. We will use Px to rééeeach author’'s proposal,
where x is the sequential number of the authoh@ntaxonomy. The description
by thematic group will highlight the resemblances of agmhes in terms of the
topic of study and will simplify the readers’ undmding of such a vast lite
ture. In spite of the fact that many other authwad also contributed to the ad-
vancement of flexible querying in crisp databaseshis work we selected the
most represedtive for each topic.

G1 Basic fuzzy predicates

P1. Tahani (Tahani 1977) was the first author to pempthe use of fuzzy sets
theory to improve the flexibility of crisp databageeries. He proposed a formal
approach and architecture to deal with simple fupzgries for crisp relational da-
tabases. The queries are based on the SEQUEL lgmgliae idea may be best il-
lustrated by the query:

Q4 - Find the names and department numbers of employees iwhmang and
have a high salary OR those who are young and lmmve&ommission

Using our database scheme defined in E)s(4) and Tahani's proposal such a
query may be expressed as:
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SELECT name, # dep (58)
FROM Employees
WHERE age¥ OUNGAND (sal=HIGH OR commissionEOW)

Thus, Tahani proposed to use in the query conditegue terms typical for
natural language. Syntactically, they are represkmtsfuzzy predicatesTheir
semantics is provided by appropriate fuzzy set&nJlthe main question is how
the matching degree for each particular row is asegh. For that purpose Tahani
defines the matching functiop For a tuple, and a simple query of typeA = v,
whereA is an attribute (e.gage andv is a vague (fuzzy) term (e.goung, the
value of the functioryis:

y(P.t) = p(u) (59
whereu is the value of the attribuein tuplet. For example:

UAGE =young <22, Arthur, 1, 30, programmey 150Q 50, (60)
New York) = 0.5

if 1,.,,(30)=0.5. The matching functiop for complex queries involving logical
connectives likage=YOUNGAND (sal=HIGH OR commission=LOWijs:

WP, AND P, t) = min (AP, t), KP,, 1)) (61)
y (P, ORP,, t) = max (P,, t), UP,, 1)) (62)
U= Pt) = 11P, ) (63)

whereP, P, P, are queries. Thus, the logical connectives ingtieries are inter-
preted as the original Zadeh's fuzzy connectives.

G2 Flexible aggregation operators

P2. Kacprzyk, Zadrozny and Ziolkowski (Kacprzyk andolkowski 1986;
Kacprzyk, Zadrozny and Ziolkowski 1989) were thstfto propose the aggrega-
tion of partial queries (predicates, conditionspguided by a linguistic quanti-
fier (see Section 3). Thus, they proposed to exteadjuerying language so as the
selection opetor’s condition may be expressed as:
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P=Qoutof {P, ...,P} (64)

whereQ is a linguistic (fuzzy) quantifier anfg are partial conditions to be aggre-
gated. Thus, the overall matching degree may bepated using any of the ap-
proaches discussed in Section 3. In (Kacprzyk amka@wvski 1986) and
Kacprzyk, Zadrozny and Ziolkowski (1989) the anigl Zadeh's approach has
been adopted, but later in (Kacprzyk and Zadroz#97) the authors used the
OWA operators as the model for the linguistic qifeant Both type | and type I
linguistically quantified propositions (see Section 3) evstudied in this context
by the authors. In the latter case query (64) magxbended to:

P =Qimportant out of P, ..., P}, (65

where the importance is represented by a fuzzy&eYf's in the sense that the
value of the membership function of givenis equal to its importance weight.
Thus, in (65) importance correspond®tm “Q B’s are A’$ of Section 3.

P3. Another scheme for the aggregation of fuzzy coaddiof varying impor-
tance has been studied by Bosc and Pivert (Bos®medt 1993). They proposed
a fuzzy operator for the hierarchical aggregatiériuazy conditions, which ex-
tends the concept of hierarchical aggregation giweriacroix and Lavency for
crisp conditions (Lacroix and Lavency 1987).

Lacroix and Lavency proposed to extend the conoeptassical crisp queries
in the following way. A query has two parts: a stéiln part,S and a set of crisp
conditions,PRF, called preferences. The semantic of this quetiasfollowing:
select the tuples satisfying S and rank them agugrd PRF. More precisely, if
there are no tuples satisfying conditiSrthen the answer to the query is empty.
Otherwise, the answer comprises the tuples th#iyvBrand at the same time best
satisfyPRF. In the latter case, various assumptions on ttegrglation of the con-
ditions belonging to theRFmay be made. Two cases are considered: (a) the con
ditions are equally important, (b) there is a @rjehierarchy of conditionsthose
higher in hierarchy are more important. Thus, ie #econd case we have the
importance of conditions imposed not by numericaights, but by their paison
in the hierarchy. The ranking of the tuples depemasvhat assumption is made:
(a) or (b). In the first case, the count of theditans in PRF that are ssdied by
a tuple is taken into account. In the second dhselexicographic ordeng of the
tuples according to their fulfillment of particulaonditions beloging to PRF
(taken in order imposed by the hierarchy) is emgtby

Bosc and Pivert (Bosc and Pivert 1993) proposeazayf operatoN to model
the hierarchical aggregation described above, inctwlthe contribution of a
condition P, 0 PRFis less or equal than the contribution of condgidigher in
the hierarchy. Let us assume that the conditioesaadered according to the
hierachy, i.e., ifi<j thenP, is higher in the hierarchy (is more important)rtifa
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chy, i.e., ifi<j thenP, is higher in the hierarchy (is more important)rttia The
fuzzy operator proposed is defined as a combinaifotivo operators. The first,

denoted below Witm'H , limits the contribution of conditio®, relatively to the

contributions of all preceding conditiord (i<j), while the second combines all
contributions to obtain the final value for the aggregatdnhe fuzzy conditions:

_2imR® 66
NG SO A (%9

where /J'H (t) =minj < (upj (t)). This operator expresses the degree to which a

tuplet satisfies the hierarchical aggregation of the yuzanditions. The authors
also considered another version of their operaplacing the arithmetic mean by
the weighted average.

Bosc and Pivert adopt a different interpretatiorhiefarchy of conditions than
originally assumed by Lacroix and Lavency. Nameiythe latter case, if naple
satisfies a condition from, e.g., theh level of the hierarchy, then the catiahs
of the lower levels do play a role in the rankiriguples. In the formergproach,
all these lower levels are neglected.

P4. Dubois and Prade (cf. (Dubois and Prade 1997)jedfuthe question of con-
ditions P, with varying degrees of importance forming togetaecompound con-
dition P via the conjunction. The first model considers samportance weight

for each elementary conditid® and the matching degree of the weighted condi-
tion P, against a value of the corresponding attribute is given by thHofwing
eqLetion:

g (W)= maxiup (U)1-w) (67)

where F}* denotes the conditioB, with an importance associated to it. Then, the
matching degree of the conditiéhs calculated using the standard min operator:

1p(W) = Min gy )= min maxup (0)1-) (68)

When the importance is minimak,(= 0), the conditiorP, is not considered in
the evaluation. On the other hand, wiif+ 1, the evaluation of conditid?, is vi-
tal for the evaluation of conditioB. This model has been refined (see in (Dubois
and Prade 1997)) to deal with a variable importameedepending on the match-
ing degree of the associated elementary condiEonexample, in a specific con-
text it may be useful to assume constant for relatively high satistéon of the
elementary condition but for extremely low satisifaT it should be stronger re-
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flected in the overall matching degree by autonadiicincreasingw,. For exam-
ple, if we want to buy a car and one of our crieris to have a modate price,
but it is not our primary criterion (condition),eh we assume an importance
weight smaller than 1.0. However, if a particular as a very high price, the
price crierion becomes more important, (= 1) and the car is rejected by having a
very low satisfaction membership value.

The second model, originally proposed by Yager984L(see in (Dubois and
Prade 1997)) considers a threshaldor each elementary conditid?. If condi-
tion P, is satisfied to a degree above threshmldhat is,p,(u) = a, the resuing
partial matching degree becomes 1, i;eﬁ* (u =)X. On the other hand, if the

threshold is not reached, i.e,(u) < a, then we may consider two ways for the

u
evaluation of the condition: (at)P* (u F p,(u) or (b) Hpr (u)= HR( ) . It turns
i | aj
out that both ways may be expressed byraia:
u=min p(U)= min a; - u
np(u) i=:L...,nuP' (u) min_aj ke (U) (69)

where - is the implication logical operation. Then, usithg Gddel implication

(see Eq(22)) and the Goguen implication (see ER3)) we can obtain (a) and
(b), respectively. Note that the first model of wnfance proposed byubois and

Prade (see in (Dubois and Prade 1997)) and forewhl®y Eq.(67) is also cov-

ered by the general formula of (69) when the KleBrenes implication (see Eq.
(20)) is assumed.

Still another model of importance applicable to thggregation of partial
matching has been proposed by Dubois and Pradeo{®@md Prade 1997) in
which they use conditional requiremeis>P, to provide an intergtation for
the hierarchical aggregation of fuzzy predicatdse Guthors consider a siar
context to that of the paper by Lacroix and Laveti@croix and Lavency 1987).
An overall conditionP is considered to be a sequence of elementaryitoms
P.,,accompanied by importance weights (called fpgierities). It is interpreted
in such a way thatP, should be satisfied (with priority 1) and among 8olu-
tions meetind?, (if any) the ones satisfying, are preferred (with prioritg,), and
among those satisfying bokh andP,, those satisfying, are preferred with prior-
ity a, (0, <a, < 1) and so on”. This may be interpreted as nestptication op-
eratorsP,>(P,2>(P,~>... . The overall matching degree (the results of theagg
gation) may be thus represented by the followingnimership function defing a
fuzzy set of elements (rows) satisfyiRgwhenP consists of 3 partial préchtes):

tey (W), maxtip, (W) 1~ min(ug (1),a2)).

Fnax(ip, ()1~ minGu, (u). e, (1), a3)) o

kp(U) = min
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where min(up (u),a2) and min(up (u),up,(u),a3) are priority levels (corre-

sponding tow in Eq. (67)) of fuzzy conditionsP, and P,, respectively. Hence,
concerning the predicat, its priority isa, if P, is fully satisfied and is zero R,

is not at all satisfied, which reflects the facttR, is conditioned byP,. This is
another example of the variable importance weight this time depending on the
satisfaction of the “preceding” partial conditiddotice, that the hierarchy (nest-
ing) of the conditions is here used in the sameeeas in Bosc and Pivert's ap-
proach rather than in Lacroix and Lavency's sense.

G3. SQL extensions

In G1 and G2 we reviewed proposals for the apptinabf fuzzy conditions, in
the context of crisp relational database queryingerms of relational algebra we
considered them as extensions toghkectionoperation making it possible to use
linguistic terms and flexible aggregation operatorsanditions.

Here, we discuss two proposals of the most popHéensions of a de facto
standard querying language of relational databasesSQL. Notice that already
in Section G1 we discussed Tahani's approach djreeferring to SQL (or
SEQUEL). However, both approaches discussed Hee&S@Llf and FQUERY for
Access, differ from Tahani’'s approach. The firseas an extension to SQL syn-
tax introducing linguistic (fuzzy) terms, wherevemakes sense, and the second
is an example of the implementation of a specifizZy extension” to SQL for
Microsoft Access®, a popular desktop DBMS.

P5. The previously discussed approaches concentrat¢ideduzzificationof con-
ditions appearing in the WHERE clause of the SGBE4 ECT instruction. Bosc
and Pivert (Bosc and Pivert 199Bosc and Pivert 1998osc and Pivert 1997)
proposed a new language, called $Qhat is a much more conghensive and
completefuzzyextension to the crisp SQL language. In ${iguistic terms may
appear as:

1. Fuzzy values, relations and quantifiers (as agdi@yaoperators) in the
WHERE and HAVING clauses;

2. The linguistic quantifiers in addition to the clasé EXISTS and ALL quanti-
fiers used together with subqueries.

Moreover, the authors observe that in case of cenBQL queries involving
linguistic (fuzzy) terms the partial results are#y relations. Thus, all operations
of relational algebra (implicitly or explicitly uden SQL’s SELECT instruction)
have to be redefined to properly process fuzzyticgla. Hence, the union, inter-
section and difference operations are considerpéci§l attention is also paid to
the division operation which may be interpretedhidifferent way due to many
possible versions of the implication available uizdy logic. Other typical opera-
tions for SQL require a redefinition, including thartition of relations (fuzzy re-
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lations) with the operator (clause) GROUP BY arel dpeators IN and NOT IN
used together with subqueries.

All the features of SQL just mentioned were extehdesuch a way so as to
preserve the equivalences that occur incifigp SQL. To illustrate this work, we
describe below an extension of the nesting opetldtand how the partition of
relations is adapted to the case of a fuzzy relaticSQL.

SQLf allows fuzzy conditions as described in G2. Foareple, the query
(Bosc and Pivert 1995)

Q5 - Find the young employees who work in a Highiget department

can be expressed in S€as (Bosc and Pivert 1995)

SELECT #emp (71
FROM Employees
WHERE age = ‘young’ AND #dep IN (SELECT #dep

FROM Departments

WHERE budget = ‘high’)

where the result of the subquery is a fuzzy retat@@onsequently, the meaning of
the conditiona IN E, wherea is an element anfd is a crisp relation, must be ex-
tended to deal with fuzzy relations. Fuzzy setethesuggests the following defi-

nition for the predicate IN (Bosc and Pivert 1995)

A = in(u=(a,b), ualb
nin (@A) bmsfptégr(A)m'n(ﬂ (a.b). ua (b)) (72)

wherea is an element andl is a fuzzy set. In case of the classical idemétgtion

"=" this boils down tou,(a,A)=p,(a). Bosc and Pivert (Bosc and Pivert 1995)
propose to obtain more flexibility by replacing “with another operator referring
to the similarity between elements. This leads ¢orcept of duzzy membership
IN.. For example, the query (Bosc and Pivert 1995)

Q6 - Find the employees who work in a department whaskydt is about
1000 times their own salary

can be expressed in S€as (Bosc and Pivert 1995)

SELECT #emp (73
FROM Employees
WHERE sal * 1000 IN(SELECT budget

FROM Departite

WHERE #dejmployees.#dep)
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In SQLf, the HAVING clause is extended in two ways: witfuazy condition
and/or fuzzy quantified proposition. As an examplilex fuzzy condition, we can
replace the identity operator “=" with the similgroperator=. As an example of
using fuzzy quantified propositions, the query (Baad Pivert 1995)

Q7 - Find the departments where most of the young eraptosire well paid

may be expressed in SQas (Bosc and Pivert 1995)

SELECT #dep (74
FROM Employees

GROUP BY #dep

HAVING most (age = ‘young’) ARE (sal = ‘well paid’)

Recently, the authors of S®kre working on the interpretation of SQL’s ag-
gregate functions such as MAX, AVG etc. for theecakfuzzy relations. For ex-
ample, it is not clear what should be the answdhéoquery: Find maximum sal-
ary of young employeesFor a discussion of this topic see, e.g., (Duboid a
Prade 1990; Bosc et al. 2001; Bosc et al. 2002)

P6. Kacprzyk and Zadrozny (Kacprzyk and Zadrozny 1988jted with the syn-
tax of SQL language as it is implemented in therbBoft Access® DBMS. The
authors proposed to include in the language liniguiBizzy) terms (preidates) in
the spirit of the approaches discussed in SectibnM®re specifically, they pro-
posed to take into account the following typesmjuistic terms:

e fuzzy values (e.g. YOUNG)
» fuzzy comparators (e.g. MUCH GREATER THAN)
» fuzzy quantifiers (e.g. MOST)

The matching degree of relevant rows is calculammbrding to the previously
discussed semantics of fuzzy conditions and linignaily quantified propasons.

Kacprzyk and Zadrozny (Kacprzyk and Zadrozny 1988)e implemented this
extension to SQL as an ady called FQUERY for Access, in the Microsoft Ac-
cess package, thus extending the native Accessglyigg interface with a capa-
bility of manipulating linguistic terms.

In FQUERY for Access, the user composes a quengwsiQuery By Example
type user interface provided by the host envirorttmies, Microsoft Access. It is
executed more or less as a regular Access’s quieilg WQUERY is responsible
for the calculation of matching degrees of the ramerpreting linguistic terms in
an appropriate way. The resulting rows of the angwhation are ordered nen
increasingly with respect to the matching degreQUERY for Access was one
of the first implementations demonstrating the ubefss of fuzzy querying fea-
tures for a crisp database. Besides the syntaxsamantics of the extended SQL,
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the authors proposed also a scheme for the eligitand manipulation of linguis-

tic terms to be used in queries. The problem has Iselved in accordance with
the relational data model paradigm. Linguistic terane maintained by FQUERY
in a dictionary, “de facto” as another system tatging metadata in regular rela-
tional database management systems.

The concept of FQUERY for Access has been lateeldped in two direc-
tions. In (Zadrozny and Kacprzyk 1998) and (Kacgrapd Zadrozny 1999) the
very same concept has been applied in the envimohofethe Internet WWW
service. Another interesting line of developmena¢irzyk and Zadrozny 2000;
Kacprzyk and Zadrozny 2000) boils down to the addibf some data mining
capabilities to the existing fuzzy querying inteda Such a combined imface
partially exploits the same modules and data sirastand seems to be a promis-
ing direction for the devepment of advanced data analysis tools.

G4. PRUF and flexible querying

P7. Takahashi (Takahashi 1991; Takahashi 1995) prabadéexible query lan-
guage (FQL) that is an extension to the domairticglal calculus (DRCYhus, in
fact he proposed to use fuzzy logic language idstéalassical logic laguage to
express conditions that requested data should fieetauthor fdows to some
extent the idea of Zadeh’s PRUF (see Section 3jvever, it seems that the
grammar proposed by the author is unnecessarilylcated.

As in case of the crisp DRC, the result of a querpressed as in (7), is a set
of rows satisfying a formula. Note that these ransy come directly from the
relations defined in a database or can be “constructemi existing relations
(e.g., as in algebraic join operation).

There are two problems with the Takahashi's langu&grst, he does not dis-
cusses any extension of the concepsafe formula(Ullman 1982) for his lan-
guage so that some queries (formulas) may produdefiaite number of rows as
an answer. Second, Takahashi refers to Zadeh's RR&tHs not fully sound in
the context of a querying language. Basically, PRW®&vides smantics for a
subset of natural language propositions. This séosais based on padlity
theory and thus is more appropriate for the reptasien of impecise facts in the
database rather than for the interpretation of imgaof a query. Anyway, the
calculations overlap to some extent and those megbdy Takahashi for match-
ing degree assessment are still valid.

An experimental application for querying a busindatabase using the PRUF
translation rules (section 3) that showed the Ky of the PRUF rules was de-
veloped by (Ribeiro and Moreira 2003)
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5 Flexible query languages (FQLSs) for fuzzy relational
databases

Several fuzzy querying models for modeling incortgli@formation in fuzzy re-
lational databases have been proposed in thetliterésee for instance (Bosc et
al. 1999)). Usually, each model requires a spaadliquerying formalism. In this
section we propose a taxonomy for the main progdsaind in the literature re-
lated to fuzzy relational databases. The objecifveroposing this taxonomy is to
offer a structured view about the topic. We hopshed some light on main dif-
ferences and similarities between the particulgr@gches. Further, we hope the
taxonomy can offer some guidance and clarificatibout the most relevant pro-
posals in the area.

5.1 Taxonomy of FQLs for fuzzy databases

In Fig. 4 we propose a classification for different FQLspweed in the litetture
for fuzzy relational databases.

Taxonomy Proposals of FQLs for fuzzy databases

G1. Possibilistic modell P1. Prade and Testemale (Prade and Testemale (1984,
Prade and Testemale 1987)
P2. Baldwin, Coyne and Martin (Baldwin et al. 1993)
P3. Bosc and Pivert (Bosc and Pivert 1997)

G2. Similaritybased P4. Buckles and Petry (Buckles and Petry 1985)

model P5. Buckles, Petry and Sachar (Buckles et al. 1986
P6. Shenoi, Melton and Fan (Shenoi and Melton 1989;
Shenoi et al. 1990)

G3. Hybrid models P7. Medina, Pons and Vila (Medina et al. 1994)
P8. Galindo, Medina and Aranda (Galindo et al. 2999
P9. Galindo, Medina, Pons and Cubero (Galindo.et al
1998)

Fig. 4. Taxonomy for Flexible Query Languages (FQLSs) farzy databases

The proposed taxonomy includes three main groupsuisl (G1) is devoted
to proposals related to possibilistic fuzzy datalsassroup 2 (G2) includes pro-
posals relevant for similaritypased models. Group 3 (G3) presents proposals for
hybrid models, i.e. combined possibilistic and simifyabased models.

The literature on fuzzy databases is much richer ianludes among others:
(Umano 1982Umano and Fukami 199Zemankova_eech and Kandel 1984).
We selected some representative proposals as iistéd. 4 and now we will ex-
amine them in a more detailed way.
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G1 Possibilistic model

P1. Prade and Testemale (Prade and Testemale 198djatjeze the concept of a
relational database in such a way that valyef thej-th attribute in tuple, may
be given as a possibility distribution. This makgsossible to store incoplete or
imprecise information. The idea may be best ilatsil with an example (Prade
and Testemale 1984). Let us consider the PERSCitiael (Fig.5) storing in-
formation about students where M1 correspondsdathde in mathematics dur-
ing the first quater and NAME and AGE represent name and age afdest.

All numerical and nomumerical values in the columns AGE and M1 may be
easily represented using appropriate possibilistridbutions. For instance, the
value used for Jil's AGE attribute means nothingre than that our knowledge
about her age is drawn from the proposition: 8ilyoung”. This proposition in-
duces the possibility distribution on the domairthtef AGE attribute. Because we
do not know what is Jill's exact age we can onlsigis a possibility degree to all
potential numbers representing her age. This disbn between a fuzzy set and
an induced possibility distribution is important fapproaches dealing with rela-
tional databases.

Person: Name Age M1
Tom Young 15
David 20 Rather_bad
Bob 22 bad to_very bad
Jane about 21 Rather_good
Jill Young around_10
Joe about_23 [14,16]
Jack [22,25] Unknown

Fig. 5. Example from (Prade and Testemale 1984)

Prade and Testemale (Prade and Testemale 1984)sgapo adapt the classi-
cal relational algebra to the case of the posstlulidatabase. Thus, all standard
operations of selection, Cartesian product, joae(fBoscet al. 2000) for some
problems concerning the possibilistic join), proj@e, union and intersection are
extended. In order to illustrate the algebra, veeus the selection operation and
give a relevant example of this type of query. Shkection,g,(R), of a relatiorR
upon the conditio® may refer to two types of atomic conditions Rar

1. A 6, whereA is the name of an attributés a comparison operator (fuzzy or
not) anda is a constant (fuzzy or not);
2. A 0 A, whereA, is also an attribute name.

More complex conditions can be built from the abewemic conditions and
the logical connectives of negation, disjunctiod aonjunction.
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The matching degree of an atomic condition andpdett) is computed as a
pair: possibility and necessity measure (with resfeethe possibility distrilitions
d, andd,) of relevant sets. In case (a) it is the setpcoisfuzzy, of the elements
belonging to the domain o% and being in relatior® (crisp or fuzzy) with the
constanta. In the second case (b) it is the subset of thie€ian product of do-
mains ofA andA, containing only the pairs of elements being itieh 6. In this
case a joint possibility distribution over the @aian product of theathains ofA
andA is used.

Formally, the matching degree for case (a) is cdepas follows. Let us de-
note byF a set (in general fuzzy) whose possibility and seitg meaures have
to be computed. Its membership function for thenelets of the domain of at-
tribute A is:

He (d) = supmin(ug (d,d), s (d")) d 0 Dom(A)) 79
dTD

Now, the possibility and necessity measures ofseith respect to the possi-
bility distribution ndij being the value af, are computed as:

Mg (F)= in(zq, (d), ug (d
g; (F) iggmm( g; (d), ke (d)) (76)

Ng; (F) = Inf max(L-mg, (d), ur () 77

In case (b) seF comprises the pairs of elements ('), dUl Dom(A), d'0]
Dom(A) such that 84’ is satisfied. Thus, its membership function isiitel to
that of &

K (d,d') = pp(d,d") (79)

Now we compute the possibility and necessity messwith respect to a joint
possibility distributionn(dij A

T(dij dik) (d, d") = min(rry; (d), g (d'))  0(d,d’)UD =D (79
Then, the possibility and necessity measures anpuated as previously:

n (djdik) (F)= jggmin(ﬂ(dij vdik)(d’dl)’u': (d.d%) (80)

N (g dy) (F) = Cij%f) max(l-7(q; g,)(d,d"), x¢ (d,d) 81)
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P2. Baldwin and his collaborators (Baldwin et al. 1p88plemented a system for
querying a fuzzy relational database that uses isgnanification and the eviden-
tial logic rule. The value of an attribute in thatabase may be either a crisp value
or a possibility distribution of values. The queri@e composed of one or more
conditions (corresponding to attributes of the bas®), with anmportance for
each condition and they are represented fijeaing function (similar to the no-
tion of quantifier) and a threshold.

The specific feature of their work (Baldwin et 4P93) is the process sé-
mantic unificationused for matching the fuzzy values of the dtods with the
possibility distributions of different attribute$ a tuple in a database. That proc-
ess is based on the mass assignment theory desddg@abiwin (Baldwin et al.
1995) which gives for the matching of two fuzzyssetn interval [n, p], whene
(necessary) is the certain degree of matchingpafmbssibility) is the maximum
possible degree of matching. Next, it is described that interval is amputed.

The mass assignments theory (Baldwin et al. 198&)iges a bridge diween
the two forms of uncertainty: probability and fuzess. A fuzzy set induces a
family of probability distributions that can be repented by a function called a
mass assignmentThe interpretation of this translation (fuzzy seta mass as-
signment) may be briefly explained as follows (Ribd 993)

A mass assignmeig a functionm: 2° -, [0,1], such that:

m(A) 2 0

(82
ym(A)=1
|
whereA are subsets of a s¥t= {x,, x,, ....x}, such thatA = {x,, ..., x}. Hence,
A OA, ... OA. Note that these expressions mean thaepresents a family of
probability distributions. A fuzzy set is convertieda mass assignment in the fol-
lowing way. The normalized fuzzy sé&t = x/u(x) + XJU(X) + ... + X/U(x),
wherep(x) = 1 andu(x) = pu(x,) = ... 2 pu(x), induces a possibility dribution 1t
such thatrg(x) = p,(x) (see Eq(36)). Then, the mass assignmentassoiated
with 1t is defined over the subséisas:

m(A) =m (83)

wherem =Tt(X) - T((X,,), T4(X) =1 andm(x,,) = 0.
Semantic unificatiorcomputes the matching of two fuzzy sets calcuiathre

mass assignmemi(A[A’), which represents a conditional probability disition,
over the truth set {t, f, u}, oA givenA’. The resulting support pair () is the
sum of the truthvalues (t), in the case of,%nd the sum of the trutraluest with
the uncertain values, for the case of SFor example (Baldwin et al. 1993), the
support pair for matching the two fuzzy sets:
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cheap =10/1 + 20/0.5 + 25/0.25 + 30/0.01 &4
average = 20/0.01 + 25/0.5 + 30/1

is computed calculating the following matrix of rmaassignmentm(cheap | av-
erage:

M} m {30}: 0.5 {30, 25}: 0.49 {30, 25, 20}: 0.01
{10}: 0.5 f f F

{10, 20}: 0.25 f f u: 0.0025

{10, 20, 25}. 0.24 f u: 0.1176 u: 0.0024
{10,20,25,30}: 0.01 t: 0.005 t: 0.0049 t: 0.0001

Fig. 6. Example from (Baldwin et al. 1993)

to which corresponds the following support pair:

(S,,S)=([0.005+0.0049+0.0001],[0.0025+0.1176+0.0024)=%0.01,0.1325)

Afterwards, they combine different matching degreesonditions with their
importances using a process callecemitential support logic ruleThis rule uses
a function called a% functionthat acts as an aggregation operator OR or AND or
even something between these two functions (sirlguantifers). Formally, the
support pair ($ S) for a tuple is computed in thelkowing way:

B8 o By 5
S %H;J BRe NGl 9

where (1, B) are the supports for the conditions,w, are their importances and

n
ZWJ =1.
=

Next, we present an example of using semanticaatifin on querying a fuzzy
relational database. The following relation is mgification of that presented in
(Baldwin et al. 1993) with some attributes removed.

Common_name Upper_fur Body_length
Pine_marten ({brown:1,black:0.4}(very_dark)) (average pine_marten)
polecat ({brown:0.7,black:0.6}(very_dark)) (average polecat)
ferret ({brown:0.5,black:0.7}(dark)) (average polecat)
mink ({brown:1,black:0.7,chocolate:0.8}(very_dark)javerage mink)

Fig. 7. Example from (Baldwin et al. 1993)

The attributecommon_names crisp whereas the attributegpper_fur and
body lengthare fuzzy. The attributepper_furis a compound fuzzy attribute,
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which means it is composed of two possibility disitions: the first is discrete
(e.g., {brown: 1, black: 0.4}) and the second imtimuous (e.g., very_dark).
Body_lengthis defined using continuous possibility distrilan$ such aaverage
pine_marten which specifies that the length is average in tumtext of
pine_martermammals. The answer for the query (Baldwin e1893)

Selection criteria. Threshold = 0.

Body_length: (average polecat), Importaritigh
Upper_fur: ({brown: 1, black: 0.7}(very_dark)), Impgancelow
is:
mink has support (0.40175 1)
ferret has support (0.3 0.728)
polecat has support (0.426 0.88)
pine_marten has support (0.116 0.953846)

The above answer shows that there are two mamroaipeting for the best
solution: the mink and the polecat; the mink hésgher possible support and the
polecat has a higher necessary support. Note tieathtreshold supplied by the
user is a necessary threshold, which means thahathmals with a necessary
support greater or equal to zero appear in the emsw

P3. Bosc and Pivert (Bosc and Pivert 1997) proposevatype of query for pos-
sibilistic databases that do not rely on the fupagtern matching (seel). In-
stead, the queries of this new type refer to tipeesentation of the data (possibil-
ity distributions). In this case, an answer is eitherigpoor fuzzy set depending if
the queries are crisp or fuzzy. Moreover, these geeries improve the expres-
sion power of the associated FQL: besides the ateonditions of type#\ 6 a
andA 6 A, FQLs are enriched with new conditions that we delscribe next.

First, let us consider such new queries referningrly one possibility distribu-
tion. In order to express their conditions Bosc &krt (Bosc and Pivert 1997)
define the following three functions:

Possp{d, ...,d}) = min(m(d), ..., (m,(d)) (86)
Card_cutpA) = [{d O D: ,(d) = A}| (87
Card_suppf) = [{d O D: m,(d) > 0} (88)

whereA is an attribute in the possibilistic databade;...,d are values in the do-
main, D, of attributeA; 11, is a possibility distribution representing theuabfA,
andA is a number from the interval [0,1]. Function R@s{d,,...,d}) supplies the
truth degree of the statement “all the valdgs..., d, are possible foA”. Func-
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tionsCard_cutA, A) andCard_supgA) supply the number of values that are pos-
sible forA with possibility degrees above or equal to, retipely, A and 0.

Therefore, we can easily express queries of thewWalg type (Bosc and Pivert
1997): “find the houses for which the price value®.000 is considered more
possible than the value $80.000” or “find the haufm which $100.000 is the
only price value which is completely possible” Rsss(PRICE,{100.000} Poss
(PRICE, {80.000}) and Poss(PRICE,{100.000}) =1 addrd_cut(PRICE,1) = 1,
respectively.

These conditions are Boolean and, hence, the resp@nswers are crisp rela-
tions. However, these conditions can be fuzzified then the respective answers
are fuzzy relations (this corresponds to the cdskizzy queries against crisp
data, which was detailed in Section 4.).

In order to perform a syntactical comparison betwseo possibility distribu-
tions various comparison techniques may be emplogedRaju and Majumdar
1988). Bosc and Pivert (Bosc and Pivert 1997) msexéended resemblance rela-
tion defined on the interval [0,1], calledfazzy equality measurghich is de-
fined as follows:

gl )= miny (u). e (u)) (89)

where i, i are two possibility distributions to be compared @ is a resem-
blance relation, i.e., a reflexive and symmetrlatien defined on [0,1]. They also
propose an extended formula based both on the b¥sece relation oveD, de-
notedRES and the resemblance relation over [Odlpfoximity measurepr,), de-
fined as:

Us(n,rr')(u): sup min(}lRES(u'V)'Upr(n(u)*n'(v))) (90)

vDsupp(n‘)

The equation given above measures the degree twhwie possibility distri-
bution 7T can be replaced by the possibility distribut@nwith respect to an ele-
mentu belonging to the support af Such a replacement is acceptable (the com-
puted agree is high) if there exists belonging to the support af such thau
andv are similar (in the sense BES and the values(u) and 7t (v) are similar (in
the sense opr). Then, the degree to which we can replace a Ipigsidistribu-
tion rmwith a posmility distribution 77 with respect to the whole support ofis
given by the folleving equation (Bosc and Pivert 1997)

Hrepi ()= i, maxL-{u), s ) () (o)

ulsuprt
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where the resulting degree is the weighted comioinaif the degrees, ;,(u) for
all the elementsi in the support ofr and the valuesiu) are weights (see Eq.

(67)).

The query conditions involving two representatioas be expressed as:
REPQ) = REPQ,) (92

where REPA)) and REPA,) are the “shapes” of the possibility distributidnsbe
compared. For example (Bosc and Pivert 1997), tediion REP(AGE =
REP{niddle_agedl will evaluate the extent to which a value of atite AGE
(possibility distribution) is syntactically similao the possibility distribution in-
duced by the fuzzy set corresponding tonfiddle_agectoncept. Notice that in
the case of fuzzy pattern matching a similar quegy be used. However, it
would produce a possibility/necessity measuresefdvent that the value of the
AGE atribute belongs to the fuzzy setiddle_agedprovided that all we know
about the age is a possibility distribution.

G2 Similarity -based model

P4. Buckles and Petry (Buckles and Petry 19B&ckles et al. 198@etry 1996)
introduced a similarity based model for a fuzzyathatse in which:

1. Each domairD; is equipped with a similarity relatio§ (see Fig.8b)), which
extends the identity relation used in the crismtiehal model. It means that
two values of an attribute match not only when they identical but also if
they are similar enough. Similarity relations suppmasic features of fuzzy
querying: a query requesting a given attribute @ahkill also be satisfied by
other similar #ribute values.

2. The value of tuple for attributej, d;, may be any valid (that is, verifying the

semantics of the relation) subset of its donfajexcept for the null set. That

is: dj 2P dij #0 . This definition helps represent uncertainty witthe
tuples as well as it is the consequence of thdaiityi relations intoduced.

Fig. 8c) illustrates a relation in this model; the domaireach attbute and the
corresponding similarity relations are shown in.Ba) and Fig8b), respetively.

The authors also proposed an extension to theme#dtalgebra. The idea of
this extension is illustrated on the example of sletection operation (see Fig.
8d)). The syntax of the selection operation (Bucldeal. 1986) is slightly richer
in comparison with the one introduced in Sectigm@e that here we use our no-
tation, not the original one):

0,(R) with <level conditiorr (93
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A={a,bc d e

M={o, B x &
a) Domain Sets
la b c d e
a1 06 03 06 05 |‘i‘ 57 é4 85
b|06 1 03 07 05 o A
B|07 1 04 05
c/03 031 0303 0404 1 02
dl06 07 031 05 X| 2 W :
e|05 05 03 05 1 5/0505 041
b) Similarity RelationsS (left), S (right)
R A M
_— ©AM
a s R s RAM
cep a q : 0,30
a B a B X
a x a x
¢) Relations (one in this exanple) d) R« (0xoR) With a(M) =0.5)

Fig. 8. Example from (Buckles and Petry 1985): componehtsfuzzy rela-
tional database {@); a fuzzy relational algebra operatiodestion (d).

whereR andP denote the relation and a Boolean expressionaasqusly, while
the level conditionspecifies a similarity threshold, a number beloggdia [0,1],
for the domairD, of an attribute”, appearing irP. This operation selects the tu-
ples fromR that satisfy conditiof® but if a subcondition oP is of the formA=a,
whereA is an attribute and is constant, then it is interpreted ass similar to an
element of the value & at least to the degree expressed witHekel condtion”
(remember that the values of attributes are, in génsess). See Figdd) where
R’ is the intermediate result for the query obtairfeain the tuples satiging
conditionA = a, whereA is an attribute name ardbelongs toA's domain. Then,
the resultR is obtained by removing redundant tuples thatdestified wsing the
following definition. Two tuples, andt, are redundant if (Buckles and Petry
1985)

Id,0d)= a(®),  j=1,2,..m (94)

whered; is the value of tuplefor attributej; D, is the domain of attribute o (D))
is the similarity threshold ands a similarity index defined as:
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H(H)=min Si(Y) nop (95)
whereS(LI)is a similarity relation associated with the gonD, .

In summary, two tuples are redundant if the vahfesll corresponding attrib-
utes are similar. Two valued, andd, of an attributeA aresimilar if the mini-
mum similarity degree between a pair of element} il d, 1(d; O d,), is greater
than a prespecified one for this attribute leved(D,). All queries should pre
specify these levels for all attributes involveg ¢tefault it is assumed to be 1.0).
In the example of Fig. 2b), the tuples ¢8,8}) and (af) in relationR,’ are re-
dundant becausa is obviously similar tca (the similarity relation is reflexive)
andp is similar to botto ando, that is:

min {S(a,B), S(3,8)} = a(M) = 0.5 (96)

Hence, the tuples (ay{d}) and (af}) are merged, producing the tuple
(a,{a,B,0}) in the resulting relationr.

P5. Buckles et al (Buckles et al. 1986) adapted DREZ({Sn 2) to the similarity
based model. Syntactically, this adaptation matsfgself with the addition of the
with clausefollowing each formula. This clause is to be ipteted in a way
analogous to the case of their extended relatialggbra. Thus, starting with the
standard DRC query equivalentrrﬁwla{(xl,...,Xn)|W(X1,...,Xn)}, Buckles

and Petry’s fuzzy domain calculus comprises théofdhg atomic fomulae
(Buckles et al. 1986)

R(X,, X,, ....X)) with <domain level conditions (97)

X, 8 X, with <operator level conditior» (98)

whereR is a database relatioK, is a constant or a domain variable anddbe
main level conditionare level conditions for all attributes®) 8is a compason
operator and theperator level conditions a level condition applying t8 (when
omitted its value is 1 by default).

In case of Eq(97) the variables;, X,, ..., X, are instantiated from the hes
of a tuplet = (d,,...,d) producing the following vector of matchingegiees
(Buckles et al. 1986)

<S(d,,X), Id,, X)), .., d,,, X)> (99

that is, the matching degregR(.),t), of R(X,,X,, ..., X)) against tuplé. The val-
ues§(d,,X) are defined as follows (provided all variabksare instantiated from
the same tuple otherwiseS(d,,X) = 0 Jj):
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O min S:(uV), if X; isaconstant
X0) = g e, i J (109
2= 0 min S (uv), if Xj is aninstantiaion for X

Dd” DVDX]

S(d.

Tuplet, satisfies Eq(97) above if for each, Sd,,X) is greater or equal to the
similarity threshold corresponding to the attribate

In case of the Eq98) the matching degreg(X, 8 X, t), of formulaX, 6 X,
against tuple is the minimum valué(x,,x,) over the pairsx,x,) wherex, 0 d , x,
0 d, andd, correspond to a constant or an instantiation ofvéméable. Tiple t,
satisfies Eq(98) above if this matching degree is greater or etputie threshold
specified by theperator level condition

Further, a formula in Buckles and Petry’ fuzzy dimealculus is defined in a
similar way to the definition of a domain calculissmula (Section 2). Specifi-
cally, it is one of the following expressions (Blesket al. 1986)

1. An atomic formula

2. g, Oy, with <level condition>, ¢, O ¢, with <level conditior>, =  with <
level condition >

3. IX(A) ¢ with <level condition>, OX(A) ¢ with <level conditior>

4. (), Y]

wherey, ¢, Y, are formulasX is a domain variable associated to attribytand
level conditionapplies to any free or bound variable in the fdemy,. The au-
thors introduce also the concept of gefe formulain a way analogous to the
crisp case. Then, they prove that the expressiwepof their DRC is at least the
same as the previously discussed fuzzy relatidgabsa (see ProposB4).

P6. Shenoi and Melton (Shenoi and Melton 1989) extdritie fuzzy relational
database model of Buckles and Petry (see PropBdadsd P5) by relaxing the
transitivity property required for the similarity relation. Jheeplaced the similar-
ity relation with a proximity relation and showeldiat general propges of the
model are preserved. This provides the user wighfrilledom to define the close-
ness among the different elements of the domainekample (Shenoi and Mel-
ton 1989), ifoneis close tawo with a degree of 0.8 artdio is close tahreealso
with a degree of 0.8, then a degree of 0.6 betweerandthreewould not be al-
lowed if we used a similarity relation: the masin transitivity would impose a
value equal or higher to 0.8 which would contradmimon sense.

Further, Shenoi et al (Shenoi et al. 1990) propa@sedore general modelna
equivalence classes mod&he model is based on the following two asptioms
(Shenoi et al. 1990):

1. the existence of partitions at the desired levgbretision for each neampty
subset of a domain

2. the total ordering of partitions related to the sashomain but for different pre-
cision levels is provided by the concepts dihar andcoarserpartition.
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Assumption 1 is motivated by the postulate thataditoning of a domain
should be defined separately for each subset ofezies currently appearing in a
database. The authors call such a subsshporal domair(it is also called aac-
tive domain).

Assumption 2 expresses an intuitive requiremernit ¢éfements indistinguish-
able (i.e., falling into the same equivalence (ladsa given level of precision
should be still indistinguishable at any lower lewé precision. Thus, any two
partitions of the same temporal domain taken dewift precision levels should
be in a coarser/finer relation.

This is an abstract model (Shenoi et al. 1990) lmxdét does not specify how
to partition the domain: the users have a freedormmhibose how to define the
equivalence classesnformation chunks For instance, Buckles and Petry
(Buckles and Petry 1985) used similarity relationsscalar domains while &foi
and Melton (Shenoi and Melton 1989) used proxinmélations on scalar do-
mains. In fact, Shenoi et al. (Shenoi et al. 199®)w that any partitions satisfy-
ing assumptions 1 and 2 guarantee that the fundaimproperties of the rela-
tional model are preserved.

They also proposed a fuzzy relational algebra fis todel. For example
(Shenoi et al. 1990), Fi@.shows a fuzzy relation of candidates to a politdec-
tion storing the name, age and political view & tandidates and the asisted
algebra.

Name Age View
{Cook} {39 {Arch_Conservative}

{Dean} {68} {Utra_Liberal} Name Age View

{Hallt {42} {Conservative} {Cook} {39} {Arch_Conservative}

{Kane} {54} {IV_IoderaIe}

{Luce} {73 {Liveral} b) questionable_candidatés = (Oame Gage Oview)-

{Mann} {50} {Moderate}

{Page} {65} {Liberal}

{Rudd} {58} {Conservative} Name Age View _
a) candidatega = (Oame Oage Oview)- EE;naQ}} Eﬁi E%galng}ral}
{Luce} {73} {Liberal}

Name Age View {Mann} {50} {l\/_loderate}
{Cook, Hall} 139,42}  {Arch _Consenvative, Conservative} ~ (Page} {65} {Liberal}
{Dean, Luce, Page}{65, 68, 73} {Ultra_Liberal, Liberal} {Rudd} {58} {Conservative}
{Kane, Mann} {50, 54} {Moderate}

{Rudd} {58} {Conservative}

d) revised_candidatefiz = (Oame Oage Oiew)
~ candidates- questionable_candidates

c) abstract_candidate® = (0’ name O Age O'view)-

Fig. 9. Example from (Shenoi et al. 1990): algebra for
the equidence classes’ model

The scheme of a fuzzy relation is defined by addiregset of precision levels
a,, used for each attribute:
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aR = (aNamé aAge’ a\/iew) (101)

In Fig. 9(a-b), the partition of temporal domains into equivale classes of
identical elementgesults in partitions whose equivalence classessats with
only one element, corresponding to the special cdgbe relational model. In
fact, since each component of a tuple is a sulfsah @quivalence class in the
patition of its respective attribute, each attributdue in the relatiomandidates
must have only one element. For example, for atteilamewe can have the fol-
lowing patition:

Pare - {{Co0Kk},{Dean},{Hall},{Kane},{Luce}, {Mann}, {Pa ge}, (102
{Rudd}}
PartitionsP,,,, P,.. P.., have implicit precisions, respectively,,. ., 0o Oy,

(see relatiorrandidatesn Fig.9a)). On the other hand, the following paons:

P’ e - {{Co0K, Dean, Hall, Kane, Luce, Mann, Page, Rj}dd (103
P’ - 1{39,42}, {50,54,58}, {65,68,73}} (1049
P’ - {{Ultra_Liberal, Liberal},{Moderate} {Conservatie, (105

Arch_Conservative}}

create equivalence classesndre or less identicatlements. We can see that the
precision ofP’ ., @' ... Makes all elements of the temporal doniajy,, to be
indistinguishable whereas the precision of partitidtig, and P’ o', and
a'., Split temporal domain®,, andD,,, into three equivalent classes. It is ob-
vious that’ < a means that the corresponding partiti®ris coarser than the cor-
responding partitiorP.

Then, if we decrease the precisiangidentical) for attributes of relatiocan-
didates(see Fig9a)) to the new precision® (more or less identicil redundant
tuples will appear which must be merged. Fuzzytimiabstract candidate¢see
Fig. 9c)) shows the result of merging the tuples in retetandidatesconstering
the new precisionsr', , o', ', We can see, for example, that calades
Kane andMann are equivalent and hence mergedduse their names, ages and
political views are considered equivalent (seeipans P’ , P',..andP’, ) but
Ruddis not equivalent té&tane andMann because Rudd’s political viewednser-
vative is not equivalent to Kane and Mann’ political widmodeate). Note that

moderateand conservativedo not belong to the same equivalence class it par
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tion P’ ThereforeRuddis not redundant and tteéore is not merged with any
other candidate inandidatesrelation.

Finally, the difference operation between the furelationscandidates(see
Fig. 9a)) andquestionable_candidaté¢see Fig9b)), using precision ielsa’ .,
A’ e @'y 1S ShOwn in Fig9d). We can see that the two tuples, egponding to
candidateCook andHall, from fuzzy relationcandidatesare missing in the re-
sult, i.e. fuzzy relatiomevised_candidateBesides the tuple appearing inatiein
questionable_candidaté€ook’s tuple), an extra tuple corresponding tadidate
Hall is also removed froncandidatesbecause candidatdall is equiaent to
candidateCookunder thenore or less identicgirecision (se®”’,, ., P, P'yie)-

G3 Hybrid models

P7. Medina et al (Medina et al. 1994) proposed a fudatgbase model, GEFRED
(generalized fuzzy relational databagbat tries to integrate &ures of both the
possibilistic and similarity based models. The dataepresented withenerdized
fuzzy relationghat take into account imprecision as well as uaagy of infor-
mation. The latter is dealt with via a compatifildegree associated to each at-
tribute value. More precisely, a generalized fuezhation R is composed of two
sets (Medina et al. 1994% = (H,B), whereH (Head is the set:

H={(A:Ds, [CI): (A, : D, [.C)), ... A1 D, LCD) } (108

andB (Body) is the set:

B={(A:d,[c]), A:d,[cD, -, A :d, [c]) } (107)

whereA (j = 1...n) is thej-th attribute D (j = 1...n) is the family of all possibil-
ity distributions defined over the domain of attii®A, which is called general-
ized fuzzy domajrC, is the compatibility attribute of attribut#®, which may be
optional; andd, is the value of attributé, in tuplei andc, (j = 1...n) is the com-
patibility degree of value|;, which is a value in the interval [0,1]. For exale,
Fig. 10b) (adopted from (Medina et al. 1994)) shewgeneralized fuzzy ralon
with attributes NAME, ADDRESS, AGE, PRODUCTIVITY, ARARY and
compatibility attribute ;.. The compatibility attributes associated with othe
attributes are equal to one and, therefore, they arshoatn.

Medina et alMedina et al. 1994) defined an algebrgemeralized fuzzy rela-
tional algebrag to manipulate information stored in the fuzzyadstse. Next, we
will illustrate the selection operation, which &lled ageneralized fuzzy sekion.

It is based on a simple conditid@(A,a)=a, whereg, is a comparison opaor
(generalized fuzzy comparajpo is a compatibility thresholdo(O [0,1]), anda
is a constant. Comparison operafipiis defined as:
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6, :D,, x D, - [0,1] (108)

O (T, ) = S min(@\d,,d- ), ld, ), rr'(d
G (11,17) (dl,dz);jlgkka in@(dy,d, ) 7r(dy) 77 (d,) (109

whererrandrt are possibility distributions ar@ican be:

» A classical comparison operator such ag,=, 2, <, <;

« A fuzzy comparison operator suchasproximately equaimuch greater than
etc;

« A similarity comparison operator which is definesing a similarity relation on
scalar data.

H | Name Address Age Productivity Salary  Department
B | Antonio Reyes CatdlicosMddle  Fair 100000  Production
Francisco P.A Aarcon Od Excelent 150000 Comercial
Luis Recogidas {8/30,/ Good 110000 Production
31
Juan Carlos Camino Ronda Young  Bad 90000  Production
Julia PuertaReal Young  Good 130000 Comercial
Javier Gran Via [30,35] Fair 105000 Human Resources
a) The generalized fuzzy relatiémp
H| Name  Address Age  Gue Productivity Salary

B| Antonio  Reyes Catolicos Mddle 0.75 Fair 100000
Francisco P. A Aarcon Od 1  Excelent 150000

b) Relation S Tace 09> 0.6(EMY.

YOUNG MDDLE Oob

H]| Department _ Cooren ' XN M
B | Production 1 S | ] /NI |
Human resources0.5 S ! PN/ i
o 16 25303540455055 65 80 AGE
¢) Relation R: departments with at least o . .
) part d) Labels definitions for attributsge

bad % 0.5) enployee.

Fig. 10. Example from (Medina et al. 1994):
algebra for the GEFRED model

In fact, Eq. (109) is similar to E¢80) used while querying possibilistic data-
bases. A new element is here an explicitly stateeshold value which reswles
queries in the similarity based model. Compatipitiegrees of all involved attrib-
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utes require a special treatment in the matchirgyegecalalation. In fact, these
compatibility degrees correspond to partial matghdegrees that are inadiately
aggregated to an overall matching degree in otloetets. For example, the selec-
tion O_,scag = olEMP of relation Emp (see Fig. 10a)) using the cotidn
=(AGE,old = 0.6 results in relatiof (see Fig. 10b)). We can see from the defini-
tion of label OLD (see Fig. 10d)) that tuples cepending to mployees Luis (his
age is 30 or 31), Javier (his age evween 30 and 35) do not belongSdecause
their compatibility degree & is zero and hence the catioh is not satisfied. The
same is true for tuples cesponding to employees Juan Carlos and Julia, which
are YOUNG (see Fig. 10d)). Finally, the compatibillegrees for tuples corre-
sponding to employees Antonio and Francisco arepatad from Eq. (109).

P8. Galindo et al (Galindo et al. 1999) extended th&BED model with a fuzzy
domain relational calculus (FDRC) for querying fuzelational databases. The
FDRC language is described next.

Galindo et al.’s fuzzy domain calculus comprisess fillowing atomic formu-
las (Galindo et al. 1999)

1. R(X, X, ..., X) = a, whereR is predicate symbol corresponding to a general-
ized fuzzy relation with n attributes, and ea¢lis a constant or a domain vari-
able. This atom requires that the tupte, K, ..., X)) belongs to a relation cor-
responding toR to a degree higher or equal For a given instantiation of
variablesX; this degree of membership is computed as follows:

R(XluXZy---;Xn): maX mln :(drcyxc) (110)

r=1,...mc=1...n

wherem is the number of tuples in relation correspondm@, = is a general-
ized fuzzy comparator defined by E409). Thus, the membershipgtee of a
given tuple X, X,, ..., X) — note that nowX denotes a constant originally pre-
sent in the atomic formula or a value substitutthg domain variable- is
computed by comparing this tuple with all tuplesrelation coresponding to
the predicate symbd&. This comparison is done using a fuzzy comparator
all attributes separateld;. denotes a value of theeth atribute in ther-th tuple.
Then, the total result of comparison is taken as rtinimum of these per
attribute comparisons. A tuple of the relationdrich this makmum value is
attained is referred to #se most similar tuple

The fulfillment of thresholdx is a value in the interval [0,1] that is the mini-
mum value admissible f&(X,, X, ..., X) in order to make the atom true.

3. 6,(X,Y) = a, where#, is a generalized fuzzy comparator, ahendY are con-
stants or domain variables. This atom expressdsthbavalueX is related to
the valueY by the fuzzy comparatof, to a certain truth degree, which is
greater or equal ta.
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Examples of fuzzy atoms aRéX,, Good, X) and=(X,God) = 0.9. In the first
case, the threshold is omitted which means thagitse is equal to one.

Further, a formula in Galindo et al.'s fuzzy domaialculus is defined in a
similar way to the definition of a domain calculissmula (Section 2). Specifi-
cally, it is either an atomic formula or one of fleowing expressions: ¢, ¢, O
v, g, Oy, g, 0O @,0X @ (X),0X g (X), wherey, and s, are fuzzy formulas and
X is a domain variable. Afterwards, they demonsteateexpressive power of
FDRC proving that any expression in the fuzzy fefal algebra has an equiva-
lent expression in FDRC.

Observe that so far we are still operating withie framework of classical
logic — due to the threshold valuein an atomic formulae, they are true or false.
A possible partial matching is preserved usingdbecept of a compatibility de-
gree. The result of a query is a set of tuplesfyétig it —a new generalized rela-
tion. Each attribute value of this new relation nimeyassociated with a compati-
bility degree expressing how well this specific ualmatches the query. This
degree is computed by a matching functjomhich takes three arguments: a for-
mula (query)y, a tuplet = (d,,d,,...,d ), andX, a domain variable (attribute) for
which a compatibility degree is to be computed.sTiniay be formally escribed
as:

K, 1, X) 0[0,1] 00 A (111

ValueA is a value not belonging to [0,1] that assert$ degreeyis not appli-
cable or meaningless.

Function (¢,t,X) is defined depending on the structureyofThere are four
casesy is an atomic formula, a negation, a disjunctiom dormula with an exis-
tential quantifier (Galindo et al. 1999).

Wheny is an atomic formula of typR(X,, X,, ..., X,K) =2 a we have:

ER( K), if there are wariables iny
VRO X X (10, X =0min{,c BB if % A
, otherwise

(112

whereK is the list of constants presentgn the valuesR(K) andR(t) are com-

puted using Eq(110); X = A indicates that variabl¥ is an attfute A in R; ¢, is

the value of the compatibility attribu@ for the tuple most similar tty if there is

noc, associated with this most similar tuple, tlers assumed to be equal 1.0,
The atomic formuld; (X,Y) = a is evaluated as:

[BG(dij ,Y), If Xi =X

y(@G(XJ- ,Y)z a,ti,X): e (X;,Y), if X isaconstant (113
O .
S otherwise
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The evaluation of the negation and disjunction egpions is done using the
complement and maximum operators, respectively ($8e(18)). On the other
hand, for formulay expressed dsX ., (¢, (X, X,, ..., X, X))

yW(XpXn)t.X)=  max  via(Xq.... xnfdi(n+1)):tixx) (119
di(n+1) JDOM ()

where DOM()) is the set of all symbols that appear in formylar in a tuple of a
relation appearing imy. The remaining expressions, that is, the conjongtihe
implication, and the universal quantifier can b@ressed in an equivalent form
using the negation, the disjunction and the exigteguantifier. Then, the result
we obtain for a general querX{ X,, ..., X | (X, X,, ...,X)} is a generalized re-
lation R (see Eqs(106)-(107)) that is computed sing the following two steps
(Galindo et al. 1999)

1. Compute all the tuplesiy,...,d,) that make true the formuls(d,,...,d );
2. The compatibility values, (j=1,...n) for each compatibility attribut€, corre-
sponding to the (r = 1, ...,m) tuples ofR computed in 1., are computed as:

C; = UK, X)), X) (119

wheret, = d,,...,d,) is ther-th tuple of relatiorR. If ¢, =A orc, = 1 for allr =
1, ...,m, the attributeC, is removed fronR.

For example, the query “show the departments witleast one bad employee
(with a degree greater than or equal to 0.5) “ imagxpressed in FDRC as:

{d |, a ag, p, s(Eman,a,ag,p,s,d) O0=(p,Bad) = 0.5)} (116

Which, considering the fuzzy relation in Fig. 10pjpduces the resulting fuzzy
relation in Fig. 10c). Further, the valug,g; . ..is computed in the following way:
Copmpanmen™ Y (@, 8) =0, o (v (EMAn2,2G,p.50).L,0) O
Oy (=(p.Bad)> 0.51,,d))
= max ¥ (EmgAntonio, Reyes Catolicos, Middle, fair, 100000,
d), t,d) O
O y=(fair,Bad)= 0.5¢,,d),
y (EmpLuis, Recogidas, {.8/30, 1/31}, good, 11000®t,,d) O
0 W=(good, Badyp 0.5¢,,d),
WEmpJuan Carlos, Camino Ronda, Young, Bad, 90apQ,d) O
0 yY=(Bad, Bad)}= 0.5¢,,d)}
= max {min(1,0.5), min(1,0), min(1,1)}max {0.5,0, 1} =1
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Note that the existential quantifier (see El4)) is replaced with the values of
tuples such thadepartment = productioft,). Then, there is computed the match-
ing degree for those tuples (three) and finally itieximum of these afjrees is
consiered.

Galindo et al (Galindet al. 2000) propose also the inclusion of fuzzgriii-
ers in the FDRC language just described.

P9. Galindo et al (Galindo et al. 1998) implemented BRDB model GEFRED
on the crisp DBMS Oracle and a FQluzzy SQL(FSQL). They extended the
SELECT command of SQL in order to allow for morexible conditions by
choosing between possibility and necessity withinz{y comparators; retrieving
the most (least) important tuples using fulfillmehtesholds or allowing fuzzy
constants in the right side of the condition. Mprecisely, the main functional-
ities added are (Galindo et al. 1998)

1. Linguistic labelsThese labels can be defined for two types oftaites: attrib-
utes with an ordered domain or attributes withaaadomain. In the first case,
the labels are defined as trapezoidal possibilgjridutions and, in the second
case, a similarity relation between the labelsefdttribute is defined.

2. Fuzzy comparatorsThey extend the usual comparators =2>, < providing
comparators that have two forms, correspondindnéopossibility and the ne-
cessity cases. For example, the operator FEQ dwealdlde possibility of two
attributes (or one attribute and a constant) beipgal using Eq(80) (or Eq.
(76)). And the NFEQ operator evaluates the necessitwofattributes (or one
attribute and a constant) being equal using @4) (or Eq.(77)). Note that
FEQ and NFEQ are instances of the generalized fopmyparatorf,. Addi-
tionally, they provide the fuzzy comparatorsuch greater than(MGT,
NMGT) andmuch less tha@MLT, NMLT).

3. Fulfililment thresholdga). They are specified with the syntax:

<conditior> [THOLD] a (117

which is equivalent to having THOLD replaced ®yand where the reserved
word THOLD may be substituted by a crisp comparétor<, ...), modifying
the meaning of the condition.

4. Function CDEG(<attribute>9hows a column with theompatibility degreefor
the argument attribute, corresponding to the coibiigt degree of the condi-
tions in which the attribute appears. Function CDGhows the compatibil-
ity degree for all the fuzzy attributes appeatimghe condition. If we want to
see the compatibility columns for all attributeslahe compability degree of
the whole tuples, we will use the % character s $fELECT clause (like SQL
does for the * character).

5. Fuzzy constantsFSQL allows for the use of the following constants
UNKNOWN, UNDEFINED, NULL, $f,b,c,d], $label, [n,m], #n. $[a,b,c,d] is
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a fuzzy trapezoid function with< b < c < d. fabelis a linguistic label (as de-
scribed above);im] is an interval, for whicla =b =nandc=d =m; and #
meansapproximately nin which the fuzzy trapezoid is replaced by angle
withb=c=nandn—a=d-n.

6. Condition with ISA condition,

<Fuzzy_Attribute 1S [NOT] (UNKNOWN | UNDEFINED | (118
NULL)

is true (without NOT) when the fuzzy attribute \&lis equal to the fuzzy con-
stant on the right.

For example, the query:

Q8 - Find the Spanish cities with more than “around 3@0@usands” inhabi-

tants

may be expressed in FSQL as (Galindo et al. 1998)

SELECT city, CDEG(inhabitants) (119
FROM Population
WHERE country =2Spain’ AND

inhabitants FGEQ $[200,350,650,8@8] AND

inhabitants IS NOT UNKNOWN

where FGEQ is the fuzzy comparator extending thispce comparator;
$[200,350,650,800] is a fuzzy constant, and .7& fslfillment threshold requir-
ing that the condition on the number of inhabitdatsatisfied at least to the de-
gree 0.75. Note that two columns would be displayleel name of a city and the
degree to which its number of inhabitants is greateequal to around 500 thou-
sands. The cities with unknown number of inhab#ame excluded.

6 Conclusion

In the last two decades, imprecision (fuzziness) amcertainty has been dted
in the context of relational DBMS, in particulartime area of querying and in the
area of modeling and storing imprecise and ungedata. The first area has led
to the appearance of increasingly flexible quenglaages (FQLs) which provide
more human consistent interfaces in comparisohdcclassical query tguages,
by using fuzzy sets theory. In the second areayfsets theory is used tatend
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the relational database model, leading to whauatally called fuzzy retional
database models, and on the flexible queryingefasulting models.

We introduced two taxonomies for FQLs within thenext of relational data-
base models to organize the field and to offeractired view of the topic. One
taxonomy organizes the research on FQLs for cesttional databases and an-
other organizes the research on fuzzy relation@bdases. Both taxonomies pro-
vide a structured view of the main research toptaslied and highlight the main
differences and similarities between approachesb@lieve that our contribution
in organizing the field of flexible query languagegelational databases can shed
some light on the most relevant proposals in tlea,aas well as guidessigners
and interested users in understanding and seletlimdest pproaches to suit
their aims.
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