
Flexible Query Languages for Relational
Databases: An Overview

Antonio Rosado*, Rita A. Ribeiro**, Slawomir Zadrozny***, Janusz
Kacprzyk***

*Universidade do Algarve, Campus de Gambelas, 8000 Faro, Portugal,
arosado@ualg.pt

**UNINOVA, Campus of New University of Lisbon, Caparica 2929-516 Portu-
gal, rar@uninova.pt

***Systems Research Institute, Polish Academy of Sciences, 01-447 Waszawa,
Poland, {kacprzyk,zadrozny}@ibspan.waw.pl

Abstract

We present an overview of the most important proposals for human-oriented
query languages for relational databases, based on fuzzy sets theory. To highlight
important issues concerning communication with databases, we propose two tax-
onomies: the first taxonomy deals with flexible query languages in crisp relational
databases and the second deals with flexible query languages in fuzzy relational
databases. They can help database designers and users understand and select the
best approaches to solve their problems.

Key Words: fuzzy querying, flexible querying, relational database management
systems, imprecise information, fuzzy logic.

1 Introduction

Managers rely more and more on the use of databases to obtain insights and up-
dated information on activities of their institutions and companies. More and more
people, from experts to non-experts, are depending on information from data-
bases, to fulfill everyday tasks, notably those related to decision making. Basi-

2

cally, the content of a database describes selected aspects of the real world rele-
vant for a given company, institution, etc. Often, our knowledge about the entities
represented in a database as well as our preferences as to what should be retrieved
from a database are imperfect or imprecise. This raises a question of a proper
modeling of imperfect information in the context of database management sys-
tems (DBMSs).

The focus of this paper is on flexible query languages (FQL) for databases that
are based on fuzzy sets theory. Since there are many contributions in this field, we
propose two taxonomies to help and guide database designers and users. These
taxonomies address the FQL in crisp relational databases and in fuzzy relational
databases, respectively. Approaches mentioned in these taxonomies are not ex-
haustive in terms of literature, which is huge, but they are quite representative. We
believe that these two taxonomies provide a better understanding of the field and
can help select the best approaches to solve specific problems.

Dubois and Prade (Dubois and Prade 1997) enumerate the two reasons for us-
ing fuzzy sets theory (Zadeh 1965) to make querying more flexible. First, fuzzy
sets provides a better representation of the user’s preferences. For example, in a
query asking for some apartment “not too expensive and not too far from down-
town”, the user may feel much more comfortable using linguistic terms instead of
precisely specified numerical constraints. Moreover, these linguistic terms express
exactly what the preferences of a user are; for example when an interval to which
the price has to belong is imprecisely specified. The linguistic terms clearly sug-
gest that there is a smooth transition between acceptable and unacceptable prices.
Thus, we can have a price definitely matching or definitely not matching the
user’s request, but also matching to a certain degree. Another important aspect of
using fuzzy sets theory is a direct consequence of the previous. Namely, as soon
as we have a matching degree, answers can be ranked according to the users’ re-
quirements (Dubois and Prade 1997).

According to many authors such as Bosc and Pivert (Bosc and Pivert 1992,
1997), Kacprzyk and Zadrozny (Kacprzyk and Zadrozny 1995), Takahashi
(Takahashi 1995), Medina et al. (Medina et al. 1994), etc. there are two main lines
of research in the use of fuzzy set theory in the DBMS context. The first one as-
sumes a conventional database and, essentially, develops a fuzzy querying inter-
face using fuzzy sets, possibility theory, fuzzy logic, etc. Among authors who
have contributed to this research are Bosc and Pivert (Bosc and Pivert 1992, 1995;
Bosc et al. 1999), Dubois and Prade (Dubois and Prade 1997), Tahani (Tahani
1977), Takahashi (Takahashi 1991, 1995), Kacprzyk, Zadrozny and Ziolkowski
(Kacprzyk and Ziolkowski 1986; Kacprzyk, Zadrozny and Ziolkowski 1989;
Kacprzyk and Zadrozny 1995), Ribeiro and Moreira (Ribeiro and Moreira 1999).
In Section 4, we will describe their works and propose a taxonomy for these ap-
proaches. The second line of research uses fuzzy or possibilistic elements for de-
veloping a fuzzy database model that accounts for imprecision and vagueness in
data. Here, of course, querying constitutes also an important element of a model.
Some relevant concepts are presented, e.g., in (Baldwin et al. 1993; Bosc and

 Page 3

Pivert 1997; Bosc and Pivert 1997; Buckles and Petry 1985; Buckles et al. 1986;
Galindo et al. 1998; Galindo et al. 1999; Medina et al. 1994; Prade and Testemale
1984; Prade and Testemale 1987; Shenoi and Melton 1989; Shenoi et al. 1990).
These approaches are described in Section 5.

There are also other issues in the use of fuzzy sets theory in relational data-
bases such as efficiency of fuzzy queries execution; fuzzy functional dependen-
cies/constraints, fuzzy logical databases, but they are beyond the scope here.

In Section 2, we review the fundamental concepts of the relational data model
which includes its main querying formalisms: the relational algebra, the relational
calculus and the SQL language. Next, in Section 3, we review the main concepts
of fuzzy sets theory that will be used in this paper. Sections 2 and 3 provide the
theoretical base to make the paper self-contained. We examine in detail the main
approaches proposed in the literature that are concerned with the first line of re-
search mentioned above, i.e. flexible query languages for the crisp relational data
model. We propose a taxonomy to organize these approaches, thus resulting in an
overall picture of the main research done. The last part, Section 5, is devoted to
the second line of research mentioned above, i.e. the flexible query languages for
fuzzy relational databases. Again, a taxonomy for different approaches is pro-
posed. Finally, in Section 6, we present some conclusions about this work.

2 Brief introduction to the relational data model

A relational database is a collection of relations, defined according to the rela-
tional database model (Codd 1970). A relation may be understood as the relation
schema or the relation instance. The relation schema has the following form:

R(A1:D1, …, An:Dn) (1)

where R is the name of the relation, Ai (1 ≤ i ≤ n) is the i-th attribute (which also
may be called column or field) and Di (1 ≤ i ≤ n) is the domain corresponding to
the attribute Ai. Each Di defines a set of values being possible values for an attrib-
ute. Often, we refer to a schema by just indicating the set of attribute names R(X),
X = {Ai,…An}.

A relation instance of given relation schema is a set of tuples, each composed
of values of the attributes belonging to the relation schema:

{< d1, …, dn> | (d1 ∈ D1), …,(dn ∈ Dn)} (2)

where di (1 ≤ i ≤ n) is the value of the tuple corresponding to attribute Ai; this
value must belong to the set Di. Usually the term relation instance is abbreviated
to relation whenever there is no confusion with other aspects of the relation.

A relation is here denoted R, its n attributes are denoted A1, …, An and D1, …,
Dn are their domains. The m tuples of a relation are denoted t1, …, tm and dij repre-

4

sents the value of the j-th attribute in tuple ti. Relations are often referred to as ta-
bles, with columns and rows corresponding to attributes and tuples of the relation.

The typical operations on data in a database include insertion, deletion, updat-
ing and retrieval. The latter is the most important for our considerations. Usually
not all data is retrieved but only the data matching certain criteria is required.
From the operational point of view there are two approaches to devising a query
language, i.e., a language allowing to express the range of required data. The first
one consists in the use of a restricted version of the predicate/relational calculus of
mathematical logic to specify the requirements the retrieved data should meet. In
this approach the actual way of data retrieval is completely left to the database
management system employed. In the second approach, a query is a sequence of
operations that should be executed on the database to obtain the required data.
These operations correspond to the underlying data model, i.e., correspond to the
operations in relational algebra. From the theoretical point of view both ap-
proaches are equivalent in the sense of their expressive power. In Section 2, we
present a brief overview of both formalisms. In relational database management
systems implementations usually a hybrid approach is adopted, notably exempli-
fied by the SQL language.

Whichever querying approach is assumed, the most important part of a query is
a set of conditions (criteria) of which rows will be selected to be included in an
answer to the query. Thus, it is interesting to study the retrieval process from the
perspective where a query is meant to define a prototype of data to be retrieved.
Then, during the retrieval process for every row a matching degree of its content
and the prototype is calculated. In the classical crisp approach this matching de-
gree is binary: a row matches the prototype or not. In real situations, the descrip-
tion of the prototype may be imprecise and this leads to a partial matching degree.
This line of reasoning, adopted by many authors, provides an interesting basis for
the analysis of flexible (fuzzy) querying languages, which we will explore next.

To clarify the understanding of some proposals in the literature, we will use,
whenever necessary, the following relational scheme example:

Employees(#emp, name, #dep, age, job, salary, commission, town) (3)

Departments(#dep, budget, size, city) (4)

with the instances of relations Employees and Departments given in Fig. 1:

This example will also make possible to explain, in a simple way, the main
concepts of relational algebra and relational calculus.

 Page 5

2.1 Relational Algebra

Relational algebra defines a set of operations to manipulate data in relations
(Ramakrishnan and Gehrke 2000). The list of basic operations includes:

• the usual set theoretic operations including the union, difference and Cartesian
product. The Cartesian product is slightly modified to fit the database context
and produces a relation whose scheme is a union of the schemes of the argu-
ment relations.

• the selection, σP(R), gives the tuples of relation R that satisfy a Boolean expres-
sion P, which is defined over the scheme of R.

• the projection, πY(R), gives a relation obtained when all attributes from the set
X-Y are removed, where R(X) is the scheme of the relation R. Thus, the scheme
of the resulting relation comprises only a subset Y of the set of attributes of R
and some tuples of the original relation are also removed (those with identical
values of the attributes belonging to Y).

#dep budget size city
1 $130000 30 S. Francisco
7 $90000 20 New York
9 $110000 11 Washington
8 $50000 7 S. Francisco
3 $40000 11 New York

 #emp name #dep age job sal commission town
22 Arthur 1 30 programmer $1500 $500 New York
29 John 3 35 accounter $1800 $400 Boston
31 Mary 7 40 sales manager $2300 $200 San Francisco
32 Peter 1 39 systems analyst $2000 $300 New York
58 Barbara 7 39 marketing manager $2500 $500 Los Angeles
64 Mary 7 27 product manager $2000 $400 New York
71 Michael 8 30 research assistant $1500 $100 S. Diego
74 Jude 9 35 secretary $1600 $300 New York
85 Horatio 9 50 technical assistant $2400 $400 New York
95 Ken 3 55 controller $2800 $500 Boston

Fig. 1. Example of a crisp relational database

Other operations can also be used but they could be expressed in terms of the
five operations mentioned above. For example, the popular join operation,
joinAθB(R,S), is a combination of the Cartesian product and the selection operation.
Another operation, often discussed within the subject of “fuzzification”, is the di-
vision R ÷ S. If X and Y are the schemes of R and S, respectively, with Y ⊂ X, then
R ÷ S gives the maximal (in the sense of “⊂”) relation T, having the scheme X-Y,
such that T × S ⊂ R, i.e.,:

6

R ÷ S = {t : ∀u ∈ S, (t,u) ∈ R} (5)

The division operation may also be expressed as a combination of the projec-

tion, Cartesian product and difference operations.
We complete this section by providing an example of a query expressed in the

relational algebra. The query (Bosc and Pivert 1995):

Q1 - Find the employees younger than 35 who work in a department whose
budget is higher than $100000

may be expressed in relational algebra as:

)))(),(((10000035.#.## DepEmpjoin budgetagedepDepdepEmpemp ><= σσπ (6)

2.2 Relational Calculus

Relational calculus comprises domain relational calculus (DRC) and tuple rela-
tional calculus (TRC) (Ramakrishnan and Gehrke 2000). DRC and TRC are de-
clarative query languages based on the first-order predicate logic. The main idea
is to describe what is sought rather than to define how to get it, in a similar fash-
ion as in the relational algebra.

Next, we briefly review the DRC language because it is the base for several
flexible query languages (FQLs) described in Sections 4 and 5, respectively.

A DRC query is an expression based on the first order predicate calculus lan-
guage. The general form of such a query is as follows:

{(x1,…,xn) | φ(x1,…,xn) } (7)

where φ(x1,…,xn) is a formula of the language. An answer to such a query is a set
(possibly empty) of tuples (a1,…,an) such that when substituting ai’s for xi’s in φ a
true formula is obtained. The building blocks of formulae are atomic formulae. In
the DRC two classes of atomic formulae are usually distinguished:

R(x1, x2, …, xn)

x1 θ x2
(8)

where xi (1 ≤ i ≤ n) is either a domain variable or a constant; R is an n-ary predi-
cate ; θ is a comparison operator from the set {<, >, =, ≤, ≥, ≠}.

Finally, a formula is:

 Page 7

• an atomic formula,
• ¬ψ, ψ1 ∧ ψ2, ψ1∨ ψ2, ψ1 ⇒ ψ2
• ∃ x (ψ (x))
• ∀ x (ψ (x))

(9)

where ψ, ψ1, ψ2 are formulas and ψ(x) is a formula containing a domain variable
x. An example of a DRC query equivalent to the example of the relational algebra
query of Section 2.1 (see Eq. 6) is the following:

=∧>∧

∧<∧
∃

35665

44321
654321 100000 ,...),(

 35 ,...),,,(
,,,,|)(

x xxxxDEP

xxxxxEMP
xxxxxx (10)

In the tuple relational calculus (TRC) we use the syntax similar to Eqs. (8)-(9)

but replacing the domain variables with tuple variables. For example, (10) may be
expressed in TRC as:

{ t | t ∈ Employees ∧ t.age < 35 ∧ ∃ s ∈ Departments (s.#dep =
t.#dep ∧ s.budget > 100000)}

(11)

2.3 SQL

SQL is a de facto industry standard command language for the relational database
management systems. SQL has commands to deal with all aspects concerning the
creation, maintenance and use of a database such as the creation of tables, inser-
tion of rows, querying the database, security issues, etc. In this section, we are
only interested in what SQL provides for querying a database.

The syntax of a basic query in SQL is (Ramakrishnan and Gehrke 2000):

SELECT select_list
FROM from_list
WHERE conditions

(12)

Such a query retrieves required data from some tables and builds a new table.
The select_list specifies the expressions (often, just column names) whose values
are to populate columns of the new table. The columns used in these expressions
have to be listed in the from_list. The expressions of the SELECT clause are cal-
culated only for the rows, from the FROM clause, that meet the conditions speci-
fied in the WHERE clause. The condition is a Boolean combination of atomic
conditions created using the logical connectives AND, OR, NOT. Each atomic
condition has the following syntax: “expression op expression”, where “op” is one
of the comparison operators (<, <=, =, <>, >=, >) and “expression” is a column
name, a constant or an expression (numeric expression or string expression).

8

A basic query (12) corresponds to an expression in relational algebra involving
the operations of projection, selection and Cartesian product. For example, the
following query:

Q2 - Find the names and age of all employees, is expressed in SQL as:

SELECT name, age
FROM Employees

(13)

and the result is a table with two columns (name,age), and as many rows as in the
table Employees.

A way to extend the basic form of a query is to use nested queries (subqueries).
Usually, the nested queries are used along with the set operators IN, NOT IN,
EXISTS, NOT EXISTS, op ANY, op ALL as exemplified by the query:

Q3 - Find the names of employees who work in New York may be expressed as:

SELECT name
FROM Employees
WHERE #dep IN (SELECT #dep
 FROM Departments
 WHERE city = ‘New York’)

(14)

The subquery retrieves the set of departments that are located in New York.

The main query retrieves the names of employees such that their department is in
this set. The set operator IN allows to test whether a value belongs to a set or not.

3 A brief introduction to fuzzy sets theory

Fuzzy sets theory (Zadeh 1965) is an attempt to model an inherent vagueness of
natural language. Almost any concept expressed in natural language, like young
people, implies that elements of the universe of discourse (the particular people)
are young to a certain degree. Note that the concept of young is context depend-
ent. Such a graduality is modeled by a membership function µA that for each per-
son x assigns a value µA(x) from the interval [0,1], representing the degree to
which person x belongs to set A. In our example, µYOUNG(x) represents the degree to
which x is considered young.

The cardinality |A| of a fuzzy set A, defined on a finite universe set X, is given
by the sum of the membership values of all elements of X in A, and is sometimes
called scalar cardinality to distinguish from other types of cardinality (see e.g.
(Liu and Kerre 1998)):

 Page 9

()∑
∈

=
Xx

A xA µ (15)

The relative cardinality ||A|| of a fuzzy set A, in a finite universe set X, is de-

fined by:

X

A
A = (16)

where |X| is the cardinality of the universal set X.

The counterparts of the classic operations of the complement, union and inter-
section for fuzzy sets A and B, are defined as follows:

µ¬A(x) = 1 - µA(x) (17)

µA∪B(x) = max [µA(x), µB(x)] (18)

µA∩B(x) = min [µA(x), µB(x)] (19)

The classic correspondence of set theoretical operations and logical connec-

tives is preserved. Thus, (17)-(19) provide also interpretation for the connectives
of negation, disjunction and conjunction.

Several fuzzy implication operators have also been proposed in the literature
(Fodor and Yager 2000). The most commonly used are:

Kleene-Dienes: I(x,y) = max(1 – x, y) (20)

Lukasiewicz: I(x,y) = min(1,(1-x+ y)) (21)

Gödel:

 ≤

=
otherwise

 if 1
),(

y

yx
yxI (22)

Goguen: I(x,y) = min(y/x,1) (23)

Fuzzy sets theory was conceived primarily as a formalism to represent the

meaning of natural language expressions. In the following subsections we will
briefly review some concepts relevant for this topic.

3.1 Linguistic variable

Basically, a linguistic variable is a variable assuming linguistic values instead of
numerical values. Formally, a linguistic variable (Zadeh 1987) is a quintuple (H,
T, U, G, M) where H is the name of the variable, T is the set of linguistic names

10

(called terms) that can be assigned to the variable; U is the universe of values that
are used to define the meaning M of each linguistic value in T; and G is a gram-
mar that is used to specify the values allowed in T. The meaning M(X) of a term X
∈ T, is specified as a fuzzy subset in U. The terms may be atomic terms such as
“young” or composite terms, which result, for example, from applying modifiers
(see next subsection) and logical connectives to atomic terms. For example
(Zadeh 1987), a linguistic variable called age (H = age) may have the term set T =
{ old, very old, not old, more or less young, quite young, not very old and not very
young, …}, which, for simplicity reasons, is defined here in an informal way,
without defining the grammar G. In this example, young and old are the atomic
terms. The universe of discourse might be U = [0,100] and the meaning of the
term young, M(young), could be given by a fuzzy set, such that:

[]

]]

∈

 −+

∈

=
−

100,25 ,
5

25 2
1

25,0 ,1

)(
1

)(
u

u

u

uyoungMµ , u ∈ U (24)

3.2 Modifiers

A linguistic modifier can be modeled by using an operator that acts on the fuzzy
set corresponding to the linguistic term to which the modifier is applied. For ex-
ample (Schmucker 1984), the linguistic modifier very in the linguistic expression
“very young” intensifies the meaning expressed by the fuzzy term young. Hence,
the effect of very is to decrease the membership of the values belonging to the
fuzzy set YOUNG. The concentration operator can produce this effect:

µCON(A)(x) = µ2
A

(x) (25)

Conversely, the dilation operator can be used for defining modifiers, as for ex-

ample slightly and it is modeled as:

()() ()xx AADIL
2/1µµ = (26)

Other usual modifier is not that is modeled by the complement operator. There

are many more operators used to model linguistic modifiers, cf., e.g., (Kerre and
De Cock 1999).

 Page 11

3.3 Fuzzy (Linguistic) Quantifiers

Classical logic recognizes two quantifiers expressing that all objects posses cer-
tain property (general quantifier) or that at least one object possesses certain
property (existential quantifier), respectively. However, natural languages offer
many more forms of quantifiers. For example, quite often one says that most of
the objects possess certain property. Basically, there are two types o fuzzy (lin-
guistic) quantifiers (Zadeh 1983; Yager 1994): absolute - such as “approximately
3” and “several” and proportional such as “most” and “a few”. There are also
two general types of propositions referring to linguistic quantifiers:

1. Q X’s are A’s (type I)
2. Q B’s are A’s (type II)

where Q is a linguistic quantifier, and A and B are fuzzy sets modeling certain
fuzzy properties of the objects of the universe X. In what follows we briefly dis-
cuss how linguistic quantifiers may be formalized.

Zadeh’s calculus of linguistically quantified propo sitions

Zadeh (Zadeh 1983) proposed an interpretation for fuzzy quantified statements of
both types I and II based on the concepts of cardinality (Eq. (15)) and relative
cardinality (Eq. (16)) of a fuzzy set. A fuzzy proposition Q X’s are A’s has the
truth degree T that is computed using the following equations (Zadeh 1983):

T = Qabsolute(|A|) = Qabsolute(∑i µA(xi)) (27)

where Q is respectively an absolute and a relative quantifier. For fuzzy proposi-
tions Q B’s are A’s, where both A and B are fuzzy sets, we have (Zadeh 1983):

T = Qabsolute (|A∩B|) = Qabsolute (∑i µA(xi) ∧ µB(xi)) (28)

() ()
()

 ∧
=

 ∩
=

∑
∑

i i

i iBiA
relativerelative x

xx
Q

B

BA
QT

B

µ
µµ

 (29)

OWA operators and Yager’s calculus of linguisticall y quantified
propositions

Yager (Yager 1994) proposed the use of Ordered Weighted Averaging (OWA)
operators for the evaluation of linguistically quantified propositions to overcomee
some problems of the Zadeh’s proposal (see in (Bosc and Pivert 1995) an example
comparing Zadeh’s approach with Yager’s approach). An OWA operator of di-
mension n is a mapping f that performs an aggregation of its n arguments a1, …, an
(Yager 1994), such that:

12

∑
=

=
n

j
jjn wbaaf

1
1),...,((30)

where ai ∈ [0,1], bj is the j-th largest from among ai, and wj (wj ∈ [0,1]) are
weights such that ∑i wi = 1. The classical “AND” and “OR” may be expressed as
special OWA operators:

for wn = 1 and wj = 0 (∀j < n) we obtain f1(a1, …, an) = bn = mini ai
for w1 = 1 and wj = 0 (∀j >1) we obtain f2(a1, …, an) = b1 = maxi ai

(31)

Moreover, any OWA operator lies somewhere between the “OR” operator and
the “AND” operator (Yager 1994) in the sense that:

mini ai ≤ f(a1, …, an) ≤ maxi ai (32)

It is also possible to define an OWA operator which may be interpreted as a

linguistic quantifier. Yager (Yager 1994) proposed a scheme of defining an OWA
operator corresponding to a linguistic quantifier in the sense of Zadeh. Namely,
starting with a linguistic quantifier Q that is monotone and regular (Q(0) = 0; Q(1)
= 1) we set the weights of corresponding OWA operator as follows:

wi = Qrelative(i/n) – Qrelative((i-1)/n) ∀ i=1,…,n (33)

Then, the degree of truth T of a quantified proposition “Q X’s are A” is com-

puted using this OWA operator (Yager 1994):

T = f (µA(x1), …, µA(xn)) (34)

3.4 Possibility distributions

Consider a vague proposition “X is young”. This is an imprecise proposition be-
cause it does not assign a particular value for X (more precisely, for X’s attribute
age). Instead, it associates, with each possible value of X its possibility degree, a
number in the interval [0,1] (Klir and Folger 1988). We can say that proposition p
= “X is young” induces a possibility distribution π (the notation πX is often used to
indicate what variable is considered) on the domain of the attribute age:

X is young → π = YOUNG (35)

or, equivalently:

 Page 13

∀u ∈ U π (u) = µYOUNG(u) (36)

that is, the possibility that a certain u∈U is an actual value of X is equal to the u’s
membership degree to the fuzzy set YOUNG, which models the linguistic term
young. Knowing the possibility distribution πX we may be also interested in de-
termining what is the possibility that X’s value belongs to a set A⊆U. This leads to
the concept of the possibility measure, i.e., a function Π such that:

Π: 2U → [0,1] (37)

From the postulated properties of possibility measures it is assumed that (in
fact, usually we start with the concept and properties of the possibility measure
and only then the notion of the possibility distribution is introduced):

() ()uA
Au

π
∈

=Π sup (38)

The possibility measure alone does not tell us enough about the location of the
actual value of X: outside or inside A. Thus, it is usually argued that it should be
accompanied by the possibility measure of the complement of A. More precisely,
the necessity measure, Ν, is defined as, expressing the “impossibility” of the set

A :

() () ()uAAN
Au

π
∈

=Π−= inf1 (39)

The formulae of Eqs. (38)-(39) are extended to the case where A is a fuzzy set in
the following way:

 () () () ()()uuAAisXPoss A
Uu

µπ ,minsup
∈

=Π= (40)

and:

() () () ()()uuANAisXNec A
Uu

µπ ,1maxinf −==
∈

 (41)

Now, if we know that the possibility distribution of the X’s value is π then the
degree to which the actual value of X belongs to A (often denoted as “X is A”) be-
longs to the interval [Ν(A), Π(A)].

Eqs. (40)-(41) for the possibility and necessity measures are directly employed
when the matching degree is computed in the context of querying possibilistic
fuzzy databases - see Section 5. Actually, the interpretation of more advanced
queries calls for more sophisticated formulae. Namely, let us assume that we have
two variables X and Y, defined on the same universe U, and we know the possibil-
ity distributions of their values, πX and πY, respectively. The question is: what is

14

the possibility that the actual values of these variables are equal. In order to an-
swer this question consistently we proceed as follows. First, we observe that πX

and πY jointly represent a possibility distribution πXY on U x U:

πXY(u,w) = min (πX(u), πY(w)) (42)

Second, the possibility (necessity) measure associated with πXY will be denoted
ΠXY (ΝXY). Thirdly, the answers to our question are the values of the possibility
and necessity measures, for the set of pairs of identical elements from U, i.e.,

() (){ }() () ()()uuUuuuYXPoss YX

Uu
XY ππ ,minsup:,

∈
=∈Π== (43)

() (){ }() () ()()uuUuuuNYXNec YX
Uu

XY ππ −−=∈==
∈

1,1maxinf:, (44)

In Section 5, we discuss the Eqs. (40)-(41) for a more general case, when,
roughly speaking, the “is” and “=” operators are replaced with other crisp or fuzzy
relational operators.

Now, we would like to distinguish another concept, useful in the context of a
fuzzy database querying: the possibility distributions’ similarity. If we know the
possibility distributions for two variables, X and Y, we can be interested in finding
out how similar both distributions are. Similarity is meant here in a very broad
sense. Obviously, Eq. (43) provide an assessment of this similarity, but other
measures are also applicable. In Section 5 we discuss this concept in more detail.

3.5 Fuzzy Relations

A crisp relation R(x1, x2, ..., xn) defined on crisp sets X1, X2, …, Xn is a subset of the
Cartesian product X1 × X2 × … × Xn. Similarly, a fuzzy relation R is a fuzzy set de-
fined on the Cartesian product X1 × X2 × … × Xn. The membership degrees µR(x1,
x2, …, xn) represent the strength of the relation between the elements of the tuples
(x1, x2, …, xn). In the relational database terminology we will say that R is defined
over schema (X1, X2, …, Xn).

The composition of two binary crisp relations P(X,Y) and Q(Y,Z), denoted
P(X,Y) ° Q(Y,Z), is a crisp binary relation R(X,Z) such that:

R(X,Z) = {(x,z) ∈ X × Z | ∃ y ∈ Y (x,y) ∈ P ∧ (y,z) ∈ Q} (45)

The composition of two fuzzy binary relations P(X,Y) and Q(Y,Z) may be de-
fined in several ways. The most commonly used definitions are the following
(Klir and Folger 1988):

() () ()[]zyyxzx QP
Yy

QP ,,,minmax, µµµ
∈

=o

 (46)

 Page 15

() () ()[]zyyxzx QP
Yy

QP ,,max, µµµ ×=
∈

• (47)

respectively for max-min composition and max-product composition.
A fuzzy relation R defined on X × X, verifying the following properties: (Klir

and Folger 1988):

1. reflexivity: ∀x ∈ X, µR(x,x) = 1 (48)

2. symmetry: ∀x,y ∈ X, µR(x,y) = µR(y,x) (49)

3. max-min transitivity: ∀x,z ∈ X, µR(x,z) ≥
 • max

y∈Y
 min[µR(x,y), µR(y,z)]

(50)

is called a similarity relation R(X,X). If R(X,X) is only reflexive and symmetric
then R is called a proximity relation (Klir and Folger 1988).

An algebra for fuzzy relations

Relational algebra (see Section 2) may be extended in order to provide the same
type of operations for fuzzy relations. Next, we present the definitions for the op-
erations of such an extended algebra (Bosc et al. 1999). The set operations union,
intersection, difference and Cartesian product of two fuzzy relations R and S are
direct applications of operations on fuzzy sets, i.e.:

µ R ∪ S (x) = max (µR(x), µS(x)) (51)

µ R ∩ S (x) = min (µR(x), µS(x)) (52)

µ R - S (x) = µ R ∩ S

_ (x) = min (µR(x), 1- µS(x)) (53)

µ R x S (xy) = min (µR(x), µS(y)) (54)

where x and y are tuples of relations R and S. Moreover, the operations selection,
projection and join are defined as:

()() () ()()xxx PRRP
µµµσ ,min= (55)

()() ()zvz R
v

RZ
µµπ max= (56)

where P is a fuzzy condition, z and v are tuples defined over schema Z and V, re-
spectively, such that Z ∪ V = X and Z ∩ V = ∅; A and B are subsets of X and Y re-
spectively, and θ is a fuzzy comparator, i.e. it is a fuzzy relation, defined on sets A
and B, such as approximately equal.

16

Let us briefly explain the three formulas above. First, for selecting the tuples x
in a fuzzy relation R that satisfy a fuzzy condition P, we compute the matching
degree of each tuple against P, that is, µP(x). The membership degree of each x in
the resulting relation must take into account two values: µP(x) and its original
membership degree µR(x). Projecting a fuzzy relation R through one of its sub-
schema Z, that is, Z ⊂ X, requires forming the sub-tuples z corresponding to Z, and
considering for their membership degrees the highest membership degree of the
tuples x that include z as a sub-tuple. Finally, joining two fuzzy relations R and S
using a fuzzy condition A θ B requires concatenation of pairs of tuples x and y.
The membership degree of each new tuple xy is the minimum of its matching de-
gree related to A θ B and the original membership values of tuples x and y.

The relational algebra operation of division (see Eq. (5)) can also be extended
using the fuzzy sets (fuzzy relations) instead of the crisp sets (crisp relations).
Dubois and Prade (Dubois and Prade 1997) proposed the following extension:

µR÷S(t) = minu µS(u) → µR(t,u) (57)

where the symbol → denotes a fuzzy logic implication.

3.6 PRUF

Above we summarized how the semantics of propositions may be expressed in
terms of possibility distributions (more generally, possibility theory). So far, we
only discussed the simple propositions exemplified by Eq. (35), however, natural
languages are syntactically much richer. Zadeh (Zadeh 1978) classified fuzzy
propositions of natural languages in five types: simple fuzzy propositions (type I),
modified fuzzy propositions (type II), composed fuzzy propositions (type III),
quantified fuzzy propositions (type IV), and qualified fuzzy propositions (type V).
He proposed a semantic interpretation for each type in terms of the possibility dis-
tribution in a way analogous to Eq. (36). In Fig. 2 below we collected examples of
propositions belonging to each type and the corresponding induced possibility dis-
tribution formulation.

Type Example Induced possibility distribution
I Maria is young πage = YOUNG
II Bob is very tall πheight = VERY_TALL
III Maria is young and Bob is very

tall
π(age, height) = YOUNG ×
VERY_TALL

IV Most students are young πcount(age) = MOST, YOUNG
V It is quite true (probable or im-

possible) that Maria is young
πage = QUITE_TRUE, YOUNG

Fig. 2. Classification of fuzzy propositions (Zadeh 1978)

 Page 17

We may observe that: QUITE_TRUE, YOUNG denotes the function
µQUITE_TRUE(µYOUNG(x)); YOUNG × VERY_TALL is a Cartesian product of fuzzy set
YOUNG and the modified fuzzy set VERY_TALL; and MOST is a quantifier.

4 Taxonomy of flexible query languages (FQLs) for crisp
relational databases

In this section we propose a taxonomy for the main proposals found in the litera-
ture related to FQLs for crisp relational databases. The purpose of proposing this
taxonomy is to offer a structured view about the topic and to highlight main dif-
ferences and similarities between various approaches. Further, we believe that this
taxonomy can offer some guidance and clarification about the most relevant pro-
posals in this research area.

4.1 Taxonomy of FQLs for crisp databases

In Fig. 3 we present the main approaches in this topic grouped in four categories.
Group 1, denoted basic fuzzy predicates, includes the first approach that used
fuzzy predicates in queries. Group 2, denoted flexible aggregation operators, pre-
sents the proposals that study flexible aggregation of partial matching degrees via
linguistic quantifiers and importance weights. Group 3, denoted SQL extensions,
presents proposals introducing elements of fuzzy the querying paradigm in SQL.
Finally, Group 4, denoted PRUF and flexible querying, describes proposals that
focus on the interpretation of natural language expressions for the purposes of
querying.

FQL Taxonomy Proposals of FQLs for crisp relational databases
G1. Basic fuzzy predi-
cates

P1. Tahani (Tahani 1977)

G2. Flexible aggregation
operators

P2. Kacprzyk, Zadrozny and Ziolkowski (Kacprzyk
and Ziolkowski 1986; Kacprzyk, Zadrozny and
Ziolkowski 1989)
P3. Bosc and Pivert (Bosc and Pivert 1993)
P4. Dubois and Prade (Dubois and Prade 1997)

G3. SQL extensions P5. (SQLf) Bosc and Pivert (Bosc and Pivert 1992;
Bosc and Pivert 1995; Bosc et al. 1999)
P6. (FQUERY) Kacprzyk and Zadrozny (Kacprzyk
and Zadrozny 1995)

G4. PRUF and flexible
querying

P7. Takahashi (Takahashi 1991; Takahashi 1995)

Fig. 3. Main approaches to Flexible Query Languages (FQLs) for
crisp relational databases

18

Since the SQL’s SELECT command is the standard for the querying of crisp
relational databases, we will also use it for illustrative purposes and to clearly dis-
tinguish the taxonomy groups. The first two groups (G1-G2) of proposals, basic
fuzzy predicates and flexible aggregation operators, have a theoretical character
and essentially extend the WHERE clause’s condition of the SELECT command,
by incorporating linguistic (fuzzy) terms and using flexible aggregation operators
(connectives).

The third group (G3) of proposals, SQL extensions, comprises more practical
approaches that embed the fuzzy predicates in the syntax of the standard SQL. For
example, one of the proposals (FQUERY for Access (Kacprzyk and Zadrozny
1995)) implements fuzzy predicates in the WHERE clause and another proposal
(SQLf (Bosc and Pivert 1995)) specifies a new language that extends SQL by in-
corporating fuzzy predicates not only in the WHERE clause but wherever it
makes sense. The fourth group (G4) of proposals, natural language querying lan-
guages, instead of modifying the SQL’s SELECT command proposes a set of
natural language query types that includes an adequate subset of fuzzy proposi-
tions. The proposals included in G4 are based on the PRUF language (Zadeh
1978), and the mismatch between the natural language queries and information
stored in the crisp relational database is bridged by translation rules that perform
the respective conversion.

Next, we will present a summary of the proposals by the authors listed under
each group of the taxonomy. We will use Px to refer to each author’s proposal,
where x is the sequential number of the author in the taxonomy. The description
by thematic group will highlight the resemblances of approaches in terms of the
topic of study and will simplify the readers’ understanding of such a vast litera-
ture. In spite of the fact that many other authors had also contributed to the ad-
vancement of flexible querying in crisp databases, in this work we selected the
most representative for each topic.

G1 Basic fuzzy predicates

P1. Tahani (Tahani 1977) was the first author to propose the use of fuzzy sets
theory to improve the flexibility of crisp database queries. He proposed a formal
approach and architecture to deal with simple fuzzy queries for crisp relational da-
tabases. The queries are based on the SEQUEL language. The idea may be best il-
lustrated by the query:

Q4 - Find the names and department numbers of employees who are young and

have a high salary OR those who are young and have low commission

Using our database scheme defined in Eqs. (3)-(4) and Tahani's proposal such a

query may be expressed as:

 Page 19

SELECT name, # dep
FROM Employees
WHERE age=YOUNG AND (sal=HIGH OR commission=LOW)

(58)

Thus, Tahani proposed to use in the query condition vague terms typical for

natural language. Syntactically, they are represented as fuzzy predicates. Their
semantics is provided by appropriate fuzzy sets. Then, the main question is how
the matching degree for each particular row is computed. For that purpose Tahani
defines the matching function γ. For a tuple ti and a simple query P of type A = v,
where A is an attribute (e.g., age) and v is a vague (fuzzy) term (e.g., young), the
value of the function γ is:

γ (P,ti) = µv(u) (59)

where u is the value of the attribute A in tuple ti. For example:

γ(AGE = young, <22, Arthur, 1, 30, programmer, 1500, 50,
New York>) = 0.5

(60)

if µyoung(30)=0.5. The matching function γ for complex queries involving logical
connectives like age=YOUNG AND (sal=HIGH OR commission=LOW) is:

γ(P1 AND P2, ti) = min (γ(P1, ti), γ(P2, ti)) (61)

γ (P1 OR P2, ti) = max (γ(P1, ti), γ(P2, ti)) (62)

γ(¬ P, ti) = 1-γ(P, ti) (63)

where P, P1, P2 are queries. Thus, the logical connectives in the queries are inter-
preted as the original Zadeh’s fuzzy connectives.

G2 Flexible aggregation operators

P2. Kacprzyk, Zadrozny and Ziolkowski (Kacprzyk and Ziolkowski 1986;
Kacprzyk, Zadrozny and Ziolkowski 1989) were the first to propose the aggrega-
tion of partial queries (predicates, conditions) to be guided by a linguistic quanti-
fier (see Section 3). Thus, they proposed to extend the querying language so as the
selection operator’s condition may be expressed as:

20

P = Q out of {P1, …, Pn} (64)

where Q is a linguistic (fuzzy) quantifier and Pi are partial conditions to be aggre-
gated. Thus, the overall matching degree may be computed using any of the ap-
proaches discussed in Section 3. In (Kacprzyk and Ziolkowski 1986) and
Kacprzyk, Zadrozny and Ziolkowski (1989) the original Zadeh’s approach has
been adopted, but later in (Kacprzyk and Zadrozny 1997) the authors used the
OWA operators as the model for the linguistic quantifier. Both type I and type II
linguistically quantified propositions (see Section 3) were studied in this context
by the authors. In the latter case query (64) may be extended to:

P = Q important out of {P1, …, Pn}, (65)

where the importance is represented by a fuzzy set of Pi’s in the sense that the
value of the membership function of given Pi is equal to its importance weight.
Thus, in (65) importance corresponds to B in “Q B’s are A’s” of Section 3.

P3. Another scheme for the aggregation of fuzzy conditions of varying impor-
tance has been studied by Bosc and Pivert (Bosc and Pivert 1993). They proposed
a fuzzy operator for the hierarchical aggregation of fuzzy conditions, which ex-
tends the concept of hierarchical aggregation given by Lacroix and Lavency for
crisp conditions (Lacroix and Lavency 1987).

Lacroix and Lavency proposed to extend the concept of classical crisp queries
in the following way. A query has two parts: a selection part, S, and a set of crisp
conditions, PRF, called preferences. The semantic of this query is the following:
select the tuples satisfying S and rank them according to PRF. More precisely, if
there are no tuples satisfying condition S then the answer to the query is empty.
Otherwise, the answer comprises the tuples that verify S and at the same time best
satisfy PRF. In the latter case, various assumptions on the interrelation of the con-
ditions belonging to the PRF may be made. Two cases are considered: (a) the con-
ditions are equally important, (b) there is a (linear) hierarchy of conditions - those
higher in hierarchy are more important. Thus, in the second case we have the
importance of conditions imposed not by numerical weights, but by their position
in the hierarchy. The ranking of the tuples depends on what assumption is made:
(a) or (b). In the first case, the count of the conditions in PRF that are satisfied by
a tuple is taken into account. In the second case, the lexicographic ordering of the
tuples according to their fulfillment of particular conditions belonging to PRF
(taken in order imposed by the hierarchy) is employed.

Bosc and Pivert (Bosc and Pivert 1993) proposed a fuzzy operator N to model
the hierarchical aggregation described above, in which the contribution of a
condition Pi ∈ PRF is less or equal than the contribution of conditions higher in
the hierarchy. Let us assume that the conditions are ordered according to the
hierarchy, i.e., if i<j then Pi is higher in the hierarchy (is more important) than Pj.

 Page 21

chy, i.e., if i<j then Pi is higher in the hierarchy (is more important) than Pj. The
fuzzy operator proposed is defined as a combination of two operators. The first,

denoted below with '
µ

iP , limits the contribution of condition Pj relatively to the

contributions of all preceding conditions Pi (i<j), while the second combines all
contributions to obtain the final value for the aggregation of the fuzzy conditions:

n

t
t

n
i P

PPN
i

n

∑ == 1
)(

)(´µ
)(µ

1K
 (66)

where)).((min)(´)(tt

jPijiP µµ ≤= This operator expresses the degree to which a

tuple t satisfies the hierarchical aggregation of the fuzzy conditions. The authors
also considered another version of their operator replacing the arithmetic mean by
the weighted average.

Bosc and Pivert adopt a different interpretation of hierarchy of conditions than
originally assumed by Lacroix and Lavency. Namely, in the latter case, if no tuple
satisfies a condition from, e.g., the k-th level of the hierarchy, then the conditions
of the lower levels do play a role in the ranking of tuples. In the former approach,
all these lower levels are neglected.

P4. Dubois and Prade (cf. (Dubois and Prade 1997)) studied the question of con-
ditions Pi with varying degrees of importance forming together a compound con-
dition P via the conjunction. The first model considers some importance weight wi
for each elementary condition Pi and the matching degree of the weighted condi-
tion Pi against a value u of the corresponding attribute is given by the following
equation:

)1)(µmax()(µ iPP
w,uu

i
*
i

−= (67)

where *
iP denotes the condition Pi with an importance associated to it. Then, the

matching degree of the condition P is calculated using the standard min operator:

)1)(µmax(min)(µmin)(µ
,...,1,...,1

iP
ni

P
ni

P w,uuu
i

*
i

−==
==

 (68)

When the importance is minimal (wi = 0), the condition Pi is not considered in

the evaluation. On the other hand, with wi = 1, the evaluation of condition Pi is vi-
tal for the evaluation of condition P. This model has been refined (see in (Dubois
and Prade 1997)) to deal with a variable importance wi – depending on the match-
ing degree of the associated elementary condition. For example, in a specific con-
text it may be useful to assume wi constant for relatively high satisfaction of the
elementary condition but for extremely low satisfaction it should be stronger re-

22

flected in the overall matching degree by automatically increasing wi. For exam-
ple, if we want to buy a car and one of our criterion is to have a moderate price,
but it is not our primary criterion (condition), then we assume an importance
weight smaller than 1.0. However, if a particular car has a very high price, the
price criterion becomes more important (wi = 1) and the car is rejected by having a
very low satisfaction membership value.

The second model, originally proposed by Yager in 1984 (see in (Dubois and
Prade 1997)) considers a threshold αi for each elementary condition Pi. If condi-
tion Pi is satisfied to a degree above threshold αi, that is, µPi(u) ≥ αi, the resulting
partial matching degree becomes 1, i.e.,)(µ u*

iP
 = 1. On the other hand, if the

threshold is not reached, i.e., µPi(u) < αi, then we may consider two ways for the

evaluation of the condition: (a))(uµ *
iP

 = µPi(u) or (b)
i

P
P

u
u i

i α
)(µ

)(µ * = . It turns

out that both ways may be expressed by a formula:

)(µmin)(µmin)(µ
,...,1,...,1

uuu
i

*
i

Pi
niP

ni
P →==

==
α (69)

where → is the implication logical operation. Then, using the Gödel implication
(see Eq. (22)) and the Goguen implication (see Eq. (23)) we can obtain (a) and
(b), respectively. Note that the first model of importance proposed by Dubois and
Prade (see in (Dubois and Prade 1997)) and formalized by Eq. (67) is also cov-
ered by the general formula of (69) when the Kleene-Dienes implication (see Eq.
(20)) is assumed.

Still another model of importance applicable to the aggregation of partial
matching has been proposed by Dubois and Prade (Dubois and Prade 1997) in
which they use conditional requirements P1�P2 to provide an interpretation for
the hierarchical aggregation of fuzzy predicates. The authors consider a similar
context to that of the paper by Lacroix and Lavency (Lacroix and Lavency 1987).
An overall condition P is considered to be a sequence of elementary conditions
Pi= 1,n accompanied by importance weights (called here priorities). It is interpreted
in such a way that “P1 should be satisfied (with priority 1) and among the solu-
tions meeting P1 (if any) the ones satisfying P2 are preferred (with priority α2), and
among those satisfying both P1 and P2, those satisfying P3 are preferred with prior-
ity α3 (α3 < α2 < 1) and so on”. This may be interpreted as nested implication op-
erators: P1�(P2�(P3�… . The overall matching degree (the results of the aggre-
gation) may be thus represented by the following membership function defining a
fuzzy set of elements (rows) satisfying P (when P consists of 3 partial predicates):

−

−
=

))),(µ),(µmin(1),(µmax(

)),),(µmin(1),(µmax(),(µ
min)(µ

3

2

213

121

α

α

uuu

uuu
u

PPP

PPP
P (70)

 Page 23

where)),(µmin(21
αuP and)),(µ),(µmin(321

αuu PP are priority levels (corre-

sponding to wi in Eq. (67)) of fuzzy conditions P2 and P3, respectively. Hence,
concerning the predicate P2, its priority is α2 if P1 is fully satisfied and is zero if P1
is not at all satisfied, which reflects the fact that P2 is conditioned by P1. This is
another example of the variable importance weight, but this time depending on the
satisfaction of the “preceding” partial condition. Notice, that the hierarchy (nest-
ing) of the conditions is here used in the same sense as in Bosc and Pivert's ap-
proach rather than in Lacroix and Lavency's sense.

G3. SQL extensions

In G1 and G2 we reviewed proposals for the application of fuzzy conditions, in
the context of crisp relational database querying. In terms of relational algebra we
considered them as extensions to the selection operation making it possible to use
linguistic terms and flexible aggregation operators in conditions.

Here, we discuss two proposals of the most popular extensions of a de facto
standard querying language of relational databases, i.e., SQL. Notice that already
in Section G1 we discussed Tahani’s approach directly referring to SQL (or
SEQUEL). However, both approaches discussed here, the SQLf and FQUERY for
Access, differ from Tahani’s approach. The first one is an extension to SQL syn-
tax introducing linguistic (fuzzy) terms, wherever it makes sense, and the second
is an example of the implementation of a specific “fuzzy extension” to SQL for
Microsoft Access®, a popular desktop DBMS.

P5. The previously discussed approaches concentrated on the fuzzification of con-
ditions appearing in the WHERE clause of the SQL’s SELECT instruction. Bosc
and Pivert (Bosc and Pivert 1992; Bosc and Pivert 1995; Bosc and Pivert 1997)
proposed a new language, called SQLf, that is a much more comprehensive and
complete fuzzy extension to the crisp SQL language. In SQLf linguistic terms may
appear as:

1. Fuzzy values, relations and quantifiers (as aggregation operators) in the
WHERE and HAVING clauses;

2. The linguistic quantifiers in addition to the classical EXISTS and ALL quanti-
fiers used together with subqueries.

Moreover, the authors observe that in case of complex SQL queries involving
linguistic (fuzzy) terms the partial results are fuzzy relations. Thus, all operations
of relational algebra (implicitly or explicitly used in SQL’s SELECT instruction)
have to be redefined to properly process fuzzy relations. Hence, the union, inter-
section and difference operations are considered. Special attention is also paid to
the division operation which may be interpreted in a different way due to many
possible versions of the implication available in fuzzy logic. Other typical opera-
tions for SQL require a redefinition, including the partition of relations (fuzzy re-

24

lations) with the operator (clause) GROUP BY and the operators IN and NOT IN
used together with subqueries.

All the features of SQL just mentioned were extended in such a way so as to
preserve the equivalences that occur in the crisp SQL. To illustrate this work, we
describe below an extension of the nesting operator IN and how the partition of
relations is adapted to the case of a fuzzy relation in SQLf.

SQLf allows fuzzy conditions as described in G2. For example, the query
(Bosc and Pivert 1995):

Q5 - Find the young employees who work in a high-budget department

can be expressed in SQLf as (Bosc and Pivert 1995):

SELECT #emp
FROM Employees
WHERE age = ‘young’ AND #dep IN (SELECT #dep
 FROM Departments
 WHERE budget = ‘high’)

(71)

where the result of the subquery is a fuzzy relation. Consequently, the meaning of
the condition a IN E, where a is an element and E is a crisp relation, must be ex-
tended to deal with fuzzy relations. Fuzzy sets theory suggests the following defi-
nition for the predicate IN (Bosc and Pivert 1995):

()
() ()()bbaAa AIN µµ ,,minsup),(µ

Asupportb
=

∈
= (72)

where a is an element and A is a fuzzy set. In case of the classical identity relation
"=" this boils down to µIN(a,A)=µA(a). Bosc and Pivert (Bosc and Pivert 1995)
propose to obtain more flexibility by replacing “=” with another operator referring
to the similarity between elements. This leads to a concept of a fuzzy membership,
INF. For example, the query (Bosc and Pivert 1995):

Q6 - Find the employees who work in a department whose budget is about
1000 times their own salary

can be expressed in SQLf as (Bosc and Pivert 1995):

SELECT #emp
FROM Employees
WHERE sal * 1000 INF (SELECT budget
 FROM Departments
 WHERE #dep = Employees.#dep)

(73)

 Page 25

In SQLf, the HAVING clause is extended in two ways: with a fuzzy condition
and/or fuzzy quantified proposition. As an example of a fuzzy condition, we can
replace the identity operator “=” with the similarity operator ≈. As an example of
using fuzzy quantified propositions, the query (Bosc and Pivert 1995):

Q7 - Find the departments where most of the young employees are well paid

may be expressed in SQLf as (Bosc and Pivert 1995):

SELECT #dep
FROM Employees
GROUP BY #dep
HAVING most (age = ‘young’) ARE (sal = ‘well paid’)

(74)

Recently, the authors of SQLf are working on the interpretation of SQL’s ag-
gregate functions such as MAX, AVG etc. for the case of fuzzy relations. For ex-
ample, it is not clear what should be the answer to the query: “Find maximum sal-
ary of young employees”. For a discussion of this topic see, e.g., (Dubois and
Prade 1990; Bosc et al. 2001; Bosc et al. 2002).

P6. Kacprzyk and Zadrozny (Kacprzyk and Zadrozny 1995) started with the syn-
tax of SQL language as it is implemented in the Microsoft Access® DBMS. The
authors proposed to include in the language linguistic (fuzzy) terms (predicates) in
the spirit of the approaches discussed in Section G1. More specifically, they pro-
posed to take into account the following types of linguistic terms:

• fuzzy values (e.g. YOUNG)
• fuzzy comparators (e.g. MUCH GREATER THAN)
• fuzzy quantifiers (e.g. MOST)

The matching degree of relevant rows is calculated according to the previously
discussed semantics of fuzzy conditions and linguistically quantified propositions.

Kacprzyk and Zadrozny (Kacprzyk and Zadrozny 1995) have implemented this
extension to SQL as an add-in, called FQUERY for Access, in the Microsoft Ac-
cess package, thus extending the native Access’s querying interface with a capa-
bility of manipulating linguistic terms.

In FQUERY for Access, the user composes a query using a Query By Example
type user interface provided by the host environment, i.e., Microsoft Access. It is
executed more or less as a regular Access’s query while FQUERY is responsible
for the calculation of matching degrees of the rows, interpreting linguistic terms in
an appropriate way. The resulting rows of the answer relation are ordered non-
increasingly with respect to the matching degree. FQUERY for Access was one
of the first implementations demonstrating the usefulness of fuzzy querying fea-
tures for a crisp database. Besides the syntax and semantics of the extended SQL,

26

the authors proposed also a scheme for the elicitation and manipulation of linguis-
tic terms to be used in queries. The problem has been solved in accordance with
the relational data model paradigm. Linguistic terms are maintained by FQUERY
in a dictionary, “de facto” as another system table storing metadata in regular rela-
tional database management systems.

The concept of FQUERY for Access has been later developed in two direc-
tions. In (Zadrozny and Kacprzyk 1998) and (Kacprzyk and Zadrozny 1999) the
very same concept has been applied in the environment of the Internet WWW
service. Another interesting line of development (Kacprzyk and Zadrozny 2000;
Kacprzyk and Zadrozny 2000) boils down to the addition of some data mining
capabilities to the existing fuzzy querying interface. Such a combined interface
partially exploits the same modules and data structures and seems to be a promis-
ing direction for the development of advanced data analysis tools.

G4. PRUF and flexible querying

P7. Takahashi (Takahashi 1991; Takahashi 1995) proposed a flexible query lan-
guage (FQL) that is an extension to the domain relational calculus (DRC) Thus, in
fact he proposed to use fuzzy logic language instead of classical logic language to
express conditions that requested data should meet. The author follows to some
extent the idea of Zadeh’s PRUF (see Section 3.6.). However, it seems that the
grammar proposed by the author is unnecessarily complicated.

As in case of the crisp DRC, the result of a query, expressed as in (7), is a set
of rows satisfying a formula. Note that these rows may come directly from the
relations defined in a database or can be “constructed” from existing relations
(e.g., as in algebraic join operation).

There are two problems with the Takahashi’s language. First, he does not dis-
cusses any extension of the concept of safe formula (Ullman 1982) for his lan-
guage so that some queries (formulas) may produce an infinite number of rows as
an answer. Second, Takahashi refers to Zadeh’s PRUF that is not fully sound in
the context of a querying language. Basically, PRUF provides semantics for a
subset of natural language propositions. This semantics is based on possibility
theory and thus is more appropriate for the representation of imprecise facts in the
database rather than for the interpretation of meaning of a query. Anyway, the
calculations overlap to some extent and those proposed by Takahashi for match-
ing degree assessment are still valid.

An experimental application for querying a business database using the PRUF
translation rules (section 3) that showed the flexibility of the PRUF rules was de-
veloped by (Ribeiro and Moreira 2003).

 Page 27

5 Flexible query languages (FQLs) for fuzzy relational
databases

Several fuzzy querying models for modeling incomplete information in fuzzy re-
lational databases have been proposed in the literature (see for instance (Bosc et
al. 1999)). Usually, each model requires a specialised querying formalism. In this
section we propose a taxonomy for the main proposals found in the literature re-
lated to fuzzy relational databases. The objective of proposing this taxonomy is to
offer a structured view about the topic. We hope to shed some light on main dif-
ferences and similarities between the particular approaches. Further, we hope the
taxonomy can offer some guidance and clarification about the most relevant pro-
posals in the area.

5.1 Taxonomy of FQLs for fuzzy databases

In Fig. 4 we propose a classification for different FQLs proposed in the literature
for fuzzy relational databases.

Taxonomy Proposals of FQLs for fuzzy databases
G1. Possibilistic model P1. Prade and Testemale (Prade and Testemale 1984;

Prade and Testemale 1987)
P2. Baldwin, Coyne and Martin (Baldwin et al. 1993)
P3. Bosc and Pivert (Bosc and Pivert 1997)

G2. Similarity-based
model

P4. Buckles and Petry (Buckles and Petry 1985)
P5. Buckles, Petry and Sachar (Buckles et al. 1986)
P6. Shenoi, Melton and Fan (Shenoi and Melton 1989;
Shenoi et al. 1990)

G3. Hybrid models P7. Medina, Pons and Vila (Medina et al. 1994)
P8. Galindo, Medina and Aranda (Galindo et al. 1999)
P9. Galindo, Medina, Pons and Cubero (Galindo et al.
1998)

Fig. 4. Taxonomy for Flexible Query Languages (FQLs) for fuzzy databases

The proposed taxonomy includes three main groups. Group 1 (G1) is devoted
to proposals related to possibilistic fuzzy databases. Group 2 (G2) includes pro-
posals relevant for similarity- based models. Group 3 (G3) presents proposals for
hybrid models, i.e. combined possibilistic and similarity-based models.

The literature on fuzzy databases is much richer and includes among others:
(Umano 1982; Umano and Fukami 1994; Zemankova-Leech and Kandel 1984).
We selected some representative proposals as listed in Fig. 4 and now we will ex-
amine them in a more detailed way.

28

G1 Possibilistic model

P1. Prade and Testemale (Prade and Testemale 1984) generalize the concept of a
relational database in such a way that value dij of the j-th attribute in tuple ti may
be given as a possibility distribution. This makes it possible to store incomplete or
imprecise information. The idea may be best illustrated with an example (Prade
and Testemale 1984). Let us consider the PERSON relation (Fig. 5) storing in-
formation about students where M1 corresponds to the grade in mathematics dur-
ing the first quarter and NAME and AGE represent name and age of a student.

All numerical and non-numerical values in the columns AGE and M1 may be
easily represented using appropriate possibility distributions. For instance, the
value used for Jill’s AGE attribute means nothing more than that our knowledge
about her age is drawn from the proposition: “Jill is young”. This proposition in-
duces the possibility distribution on the domain of the AGE attribute. Because we
do not know what is Jill’s exact age we can only assign a possibility degree to all
potential numbers representing her age. This distinction between a fuzzy set and
an induced possibility distribution is important for approaches dealing with rela-
tional databases.

Person: Name Age M1
 Tom Young 15
 David 20 Rather_bad
 Bob 22 bad_to_very_bad
 Jane about_21 Rather_good
 Jill Young around_10
 Joe about_23 [14,16]
 Jack [22,25] Unknown

Fig. 5. Example from (Prade and Testemale 1984)

Prade and Testemale (Prade and Testemale 1984) proposed to adapt the classi-

cal relational algebra to the case of the possibilistic database. Thus, all standard
operations of selection, Cartesian product, join (see (Bosc et al. 2000) for some
problems concerning the possibilistic join), projection, union and intersection are
extended. In order to illustrate the algebra, we discuss the selection operation and
give a relevant example of this type of query. The selection, σP(R), of a relation R
upon the condition P may refer to two types of atomic conditions for Pi:

1. Aj θ a, where Aj is the name of an attribute, θ is a comparison operator (fuzzy or
not) and a is a constant (fuzzy or not);

2. Aj θ Ak, where Ak is also an attribute name.

More complex conditions can be built from the above atomic conditions and
the logical connectives of negation, disjunction and conjunction.

 Page 29

The matching degree of an atomic condition and a tuple ti is computed as a
pair: possibility and necessity measure (with respect to the possibility distributions
dij and dik) of relevant sets. In case (a) it is the set, crisp or fuzzy, of the elements
belonging to the domain of Aj and being in relation θ (crisp or fuzzy) with the
constant a. In the second case (b) it is the subset of the Cartesian product of do-
mains of Aj and Ak containing only the pairs of elements being in relation θ. In this
case a joint possibility distribution over the Cartesian product of the domains of Aj
and Ak is used.

Formally, the matching degree for case (a) is computed as follows. Let us de-
note by F a set (in general fuzzy) whose possibility and necessity measures have
to be computed. Its membership function for the elements of the domain of at-
tribute Aj is:

)())'()',(min(sup)(
'

ja
Dd

F ADomdd,ddµd ∈=
∈

µµ θ (75)

Now, the possibility and necessity measures of set F with respect to the possi-
bility distribution

ijdπ being the value of dij are computed as:

))(),(min(sup)(ddπF Fd
Dd

d ijij
µ

∈
=Π (76)

))(),(-1 max(inf)(dµdπF Fd
Dd

d ijij ∈
=Ν (77)

In case (b) set F comprises the pairs of elements (d, d’), d∈ Dom(Aj), d’∈
Dom(Ak) such that d θ d’ is satisfied. Thus, its membership function is identical to
that of θ:

),(),(ddddF ′=′ θµµ (78)

Now we compute the possibility and necessity measures with respect to a joint
possibility distribution),(ikij ddπ :

DDddd,ddd dikdijdikdij ×∈∀=)',())'()((min)',(),(πππ (79)

Then, the possibility and necessity measures are computed as previously:

()))',(),',(min(sup)(,),(ddddπF Fdd
Dd

dd ikijikij
µ

∈
=Π (80)

))',(),',(-1 max(inf)(),(),(ddµddπF Fdd
Dd

dd ikijikij ∈
=Ν (81)

30

P2. Baldwin and his collaborators (Baldwin et al. 1993) implemented a system for
querying a fuzzy relational database that uses semantic unification and the eviden-
tial logic rule. The value of an attribute in the database may be either a crisp value
or a possibility distribution of values. The queries are composed of one or more
conditions (corresponding to attributes of the database), with an importance for
each condition and they are represented by a filtering function (similar to the no-
tion of quantifier) and a threshold.

The specific feature of their work (Baldwin et al. 1993) is the process of se-
mantic unification used for matching the fuzzy values of the conditions with the
possibility distributions of different attributes of a tuple in a database. That proc-
ess is based on the mass assignment theory developed by Baldwin (Baldwin et al.
1995) which gives for the matching of two fuzzy sets, an interval [n, p], where n
(necessary) is the certain degree of matching and p (possibility) is the maximum
possible degree of matching. Next, it is described how that interval is computed.

The mass assignments theory (Baldwin et al. 1995) provides a bridge between
the two forms of uncertainty: probability and fuzziness. A fuzzy set induces a
family of probability distributions that can be represented by a function called a
mass assignment. The interpretation of this translation (fuzzy set to a mass as-
signment) may be briefly explained as follows (Ribeiro 1993).

A mass assignment is a function m: 2X → [0,1], such that:

m(Ai) ≥ 0

() 1=∑
i

iAm

(82)

where Ai are subsets of a set X = {x1, x2, …,xn}, such that Ai = {x1, …, xi}. Hence,
A1 ⊂ A2 … ⊂ An. Note that these expressions mean that m represents a family of
probability distributions. A fuzzy set is converted to a mass assignment in the fol-
lowing way. The normalized fuzzy set A = x1/µ(x1) + x2/µ(x2) + … + xn/µ(xn),
where µ(x1) = 1 and µ(x1) ≥ µ(x2) ≥ … ≥ µ(xn), induces a possibility distribution π
such that πx(xi) = µA(xi) (see Eq. (36)). Then, the mass assignment m associated
with πx is defined over the subsets Ai as:

m(Ai) = mi (83)

where mi = πx(xi) - πx(xi+1), πx(x1) = 1 and πx(xn+1) = 0.
Semantic unification computes the matching of two fuzzy sets calculating the

mass assignment m(A|A’), which represents a conditional probability distribution,
over the truth set {t, f, u}, of A given A’. The resulting support pair (Sn, Sp) is the
sum of the truth- values (t), in the case of Sn, and the sum of the truth-values t with
the uncertain values u, for the case of Sp. For example (Baldwin et al. 1993), the
support pair for matching the two fuzzy sets:

 Page 31

cheap = 10/1 + 20/0.5 + 25/0.25 + 30/0.01

average = 20/0.01 + 25/0.5 + 30/1
(84)

is computed calculating the following matrix of mass assignments m(cheap | av-
erage):

{M i}: mi {30}: 0.5 {30, 25}: 0.49 {30, 25, 20}: 0.01
{10}: 0.5 f f F
{10, 20}: 0.25 f f u: 0.0025
{10, 20, 25}: 0.24 f u: 0.1176 u: 0.0024
{10,20,25,30}: 0.01 t: 0.005 t: 0.0049 t: 0.0001

Fig. 6. Example from (Baldwin et al. 1993)

to which corresponds the following support pair:

(Sn,Sp)=([0.005+0.0049+0.0001],[0.0025+0.1176+0.0024+Sn])=(0.01,0.1325)

Afterwards, they combine different matching degrees of conditions with their
importances using a process called an evidential support logic rule. This rule uses
a function called an S function that acts as an aggregation operator OR or AND or
even something between these two functions (similar to quantifiers). Formally, the
support pair (Sn, Sp) for a tuple is computed in the following way:

()

= ∑∑

==

n

j
jj

n

j
jjpn wSwSSS

11
,, βα (85)

where (αj βj) are the supports for the n conditions, wj are their importances and

∑
=

=
n

j
jw

1

1.

Next, we present an example of using semantic unification on querying a fuzzy
relational database. The following relation is a simplification of that presented in
(Baldwin et al. 1993) with some attributes removed.

Common_name Upper_fur Body_length
Pine_marten ({brown:1,black:0.4}(very_dark)) (average pine_marten)
polecat ({brown:0.7,black:0.6}(very_dark)) (average polecat)
ferret ({brown:0.5,black:0.7}(dark)) (average polecat)
mink ({brown:1,black:0.7,chocolate:0.8}(very_dark)) (average mink)

Fig. 7. Example from (Baldwin et al. 1993)

The attribute common_name is crisp whereas the attributes upper_fur and
body_length are fuzzy. The attribute upper_fur is a compound fuzzy attribute,

32

which means it is composed of two possibility distributions: the first is discrete
(e.g., {brown: 1, black: 0.4}) and the second is continuous (e.g., very_dark).
Body_length is defined using continuous possibility distributions such as average
pine_marten, which specifies that the length is average in the context of
pine_marten mammals. The answer for the query (Baldwin et al. 1993):

Selection criteria. Threshold = 0.

Body_length: (average polecat), Importance: high
Upper_fur: ({brown: 1, black: 0.7}(very_dark)), Importance: low

is:
mink has support (0.40175 1)
ferret has support (0.3 0.728)
polecat has support (0.426 0.88)
pine_marten has support (0.116 0.953846)

The above answer shows that there are two mammals competing for the best

solution: the mink and the polecat; the mink has a higher possible support and the
polecat has a higher necessary support. Note that the threshold supplied by the
user is a necessary threshold, which means that all mammals with a necessary
support greater or equal to zero appear in the answer.

P3. Bosc and Pivert (Bosc and Pivert 1997) propose a new type of query for pos-
sibilistic databases that do not rely on the fuzzy pattern matching (see P1). In-
stead, the queries of this new type refer to the representation of the data (possibil-
ity distributions). In this case, an answer is either a crisp or fuzzy set depending if
the queries are crisp or fuzzy. Moreover, these new queries improve the expres-
sion power of the associated FQL: besides the atomic conditions of types Aj θ a
and Aj θ Ak, FQLs are enriched with new conditions that we will describe next.

First, let us consider such new queries referring to only one possibility distribu-
tion. In order to express their conditions Bosc and Pivert (Bosc and Pivert 1997)
define the following three functions:

Poss(A,{d1, …,dn}) = min(πA(d1), …, (πA(dn)) (86)

Card_cut(A,λ) = |{ d ∈ D: πA(d) ≥ λ} | (87)

Card_supp(A) = |{ d ∈ D: πA(d) > 0}| (88)

where A is an attribute in the possibilistic database; d1, …,dn are values in the do-
main, D, of attribute A; πA is a possibility distribution representing the value of A,
and λ is a number from the interval [0,1]. Function Poss(A,{ d1,…,dn}) supplies the
truth degree of the statement “all the values d1, …, dn are possible for A”. Func-

 Page 33

tions Card_cut(A, λ) and Card_supp(A) supply the number of values that are pos-
sible for A with possibility degrees above or equal to, respectively, λ and 0.

Therefore, we can easily express queries of the following type (Bosc and Pivert
1997): “find the houses for which the price value $100.000 is considered more
possible than the value $80.000” or “find the houses for which $100.000 is the
only price value which is completely possible”, as Poss(PRICE,{100.000}) ≥ Poss
(PRICE, {80.000}) and Poss(PRICE,{100.000}) =1 and Card_cut(PRICE,1) = 1,
respectively.

These conditions are Boolean and, hence, the respective answers are crisp rela-
tions. However, these conditions can be fuzzified and then the respective answers
are fuzzy relations (this corresponds to the case of fuzzy queries against crisp
data, which was detailed in Section 4.).

In order to perform a syntactical comparison between two possibility distribu-
tions various comparison techniques may be employed, cf. (Raju and Majumdar
1988). Bosc and Pivert (Bosc and Pivert 1997) use an extended resemblance rela-
tion defined on the interval [0,1], called a fuzzy equality measure, which is de-
fined as follows:

() () ()()uu

Du
EQ ',min', ππψππµ

∈
= (89)

where π, π’ are two possibility distributions to be compared and ψ is a resem-
blance relation, i.e., a reflexive and symmetric relation defined on [0,1]. They also
propose an extended formula based both on the resemblance relation over D, de-
noted RES, and the resemblance relation over [0,1] (a proximity measure, pr,), de-
fined as:

()()
()

() () ()()()vuvuu prRES
pv

s ',,,minsup
'sup

', ππµµµ
π

ππ
∈

= (90)

The equation given above measures the degree to which the possibility distri-

bution π can be replaced by the possibility distribution π’ with respect to an ele-
ment u belonging to the support of π. Such a replacement is acceptable (the com-
puted degree is high) if there exists v belonging to the support of π’ such that u
and v are similar (in the sense of RES) and the values π(u) and π’ (v) are similar (in
the sense of pr). Then, the degree to which we can replace a possibility distribu-
tion π with a possibility distribution π’ with respect to the whole support of π is
given by the following equation (Bosc and Pivert 1997):

()
()

() ()()()uu S
u

repl ',
sup

,1max', inf ππ
π

µπππµ −=
∈

 (91)

34

where the resulting degree is the weighted combination of the degrees µs(π,π’)(u) for
all the elements u in the support of π and the values π(u) are weights (see Eq.
(67)).

The query conditions involving two representations can be expressed as:

REP(A1) ≈ REP(A2) (92)

where REP(A1) and REP(A2) are the “shapes” of the possibility distributions to be
compared. For example (Bosc and Pivert 1997), the condition REP(AGE) ≈
REP(middle_aged) will evaluate the extent to which a value of attribute AGE
(possibility distribution) is syntactically similar to the possibility distribution in-
duced by the fuzzy set corresponding to the middle_aged concept. Notice that in
the case of fuzzy pattern matching a similar query may be used. However, it
would produce a possibility/necessity measures of the event that the value of the
AGE attribute belongs to the fuzzy set middle_aged provided that all we know
about the age is a possibility distribution.

G2 Similarity -based model

P4. Buckles and Petry (Buckles and Petry 1985; Buckles et al. 1986; Petry 1996)
introduced a similarity based model for a fuzzy database in which:

1. Each domain Dj is equipped with a similarity relation Sj (see Fig. 8b)), which
extends the identity relation used in the crisp relational model. It means that
two values of an attribute match not only when they are identical but also if
they are similar enough. Similarity relations support basic features of fuzzy
querying: a query requesting a given attribute value will also be satisfied by
other similar attribute values.

2. The value of tuple i for attribute j, dij, may be any valid (that is, verifying the
semantics of the relation) subset of its domain Dj except for the null set. That

is: ∅≠∈ ij
D

ij dd j2 . This definition helps represent uncertainty within the

tuples as well as it is the consequence of the similarity relations introduced.

Fig. 8c) illustrates a relation in this model; the domain of each attribute and the
corresponding similarity relations are shown in Fig. 8a) and Fig. 8b), respectively.

The authors also proposed an extension to the relational algebra. The idea of
this extension is illustrated on the example of the selection operation (see Fig.
8d)). The syntax of the selection operation (Buckles et al. 1986) is slightly richer
in comparison with the one introduced in Section 2 (note that here we use our no-
tation, not the original one):

σP(R) with <level condition> (93)

 Page 35

R2: A M

 a α, δ
 c, e β
 a β
 a χ

R2’: A M

 a α, δ
 a β
 a χ

 α β χ δ
α 1 0.7 0.4 0.5
β 0.7 1 0.4 0.5
χ 0.4 0.4 1 0.4
δ 0.5 0.5 0.4 1

R: A M
 a α, β, δ
 a χ

c) Relations (one in this example)

d) R ← (σA=a(R2) with α(M) = 0.5)

A = {a, b, c, d, e}
M = {α, β, χ, δ}

a) Domain Sets

 a b c d e
a 1 0.6 0.3 0.6 0.5
b 0.6 1 0.3 0.7 0.5
c 0.3 0.3 1 0.3 0.3
d 0.6 0.7 0.3 1 0.5
e 0.5 0.5 0.3 0.5 1
 b) Similarity Relations: S1 (left), S2 (right)

Fig. 8. Example from (Buckles and Petry 1985): components of a fuzzy rela-
tional database (a-c); a fuzzy relational algebra operation: selection (d).

where R and P denote the relation and a Boolean expression as previously, while
the level condition specifies a similarity threshold, a number belonging to [0,1],
for the domain Dj of an attribute Aj appearing in P. This operation selects the tu-
ples from R that satisfy condition P but if a subcondition of P is of the form Aj=a,
where Aj is an attribute and a is constant, then it is interpreted as “a is similar to an
element of the value of Aj at least to the degree expressed with the level condition”
(remember that the values of attributes are, in general, sets). See Fig. 8d) where
R2’ is the intermediate result for the query obtained from the tuples satisfying
condition A = a, where A is an attribute name and a belongs to A’s domain. Then,
the result R is obtained by removing redundant tuples that are identified using the
following definition. Two tuples ti and tk are redundant if (Buckles and Petry
1985):

I(dij ∪ dkj) ≥ α(Dj), j = 1,2,…,m (94)

where dij is the value of tuple i for attribute j; Dj is the domain of attribute j; α (Dj)
is the similarity threshold and I is a similarity index defined as:

36

)(min)(x,ySHI j
Hx,y∈

= , H ⊆ Dj (95)

where Sj(⋅,⋅) is a similarity relation associated with the domain Dj .

In summary, two tuples are redundant if the values of all corresponding attrib-
utes are similar. Two values, dij and dkj of an attribute Aj are similar if the mini-
mum similarity degree between a pair of elements in dij ∪ dkj, I(dij ∪ dkj), is greater
than a pre-specified one for this attribute level, α(Dj). All queries should pre-
specify these levels for all attributes involved (by default it is assumed to be 1.0).
In the example of Fig. 2b), the tuples (a,{α, δ}) and (a,β) in relation R2’ are re-
dundant because a is obviously similar to a (the similarity relation is reflexive)
and β is similar to both α and δ, that is:

min {S2(α,β), S2(δ,β)} ≥ α(M) = 0.5 (96)

Hence, the tuples (a,{α,δ}) and (a,β) are merged, producing the tuple

(a,{α,β,δ}) in the resulting relation R.

P5. Buckles et al (Buckles et al. 1986) adapted DRC (Section 2) to the similarity
based model. Syntactically, this adaptation manifests itself with the addition of the
with clause following each formula. This clause is to be interpreted in a way
analogous to the case of their extended relational algebra. Thus, starting with the
standard DRC query equivalent formula)},,(),,{(11 nn XXXX KK Ψ , Buckles

and Petry’s fuzzy domain calculus comprises the following atomic formulae
(Buckles et al. 1986):

R(X1,X2, …,Xn) with < domain level conditions > (97)

X1 θ X2 with <operator level condition > (98)

where R is a database relation, Xi is a constant or a domain variable and the do-
main level conditions are level conditions for all attributes in R; θ is a comparison
operator and the operator level condition is a level condition applying to θ (when
omitted its value is 1 by default).

In case of Eq. (97) the variables X1, X2, …, Xn are instantiated from the values
of a tuple ti = (di1,…,din) producing the following vector of matching degrees
(Buckles et al. 1986):

<S(di1,X1), S(di2, X2), …, S(din, Xn)> (99)

that is, the matching degree, γ(R(.),ti), of R(X1,X2, …, Xn) against tuple ti. The val-
ues S(dij,Xj) are defined as follows (provided all variables Xi are instantiated from
the same tuple - otherwise S(dij,Xj) = 0 ∀j):

 Page 37

=
∈∧∈

=∧∈

jjj
xvdu

jj
Xvdu

jij Xx,u,vS

X, u,vS

,XdS

jij

jij

for ion instantiatan is if)(min

constant a is if)(min

)(
(100)

Tuple ti satisfies Eq. (97) above if for each j, S(dij,Xj) is greater or equal to the

similarity threshold corresponding to the attribute Aj.
In case of the Eq. (98) the matching degree, γ(X1 θ X2,ti), of formula X1 θ X2

against tuple ti is the minimum value θ(x1,x2) over the pairs (x1,x2) where x1 ∈ di1, x2
∈ di2 and dij correspond to a constant or an instantiation of the variable. Tuple ti
satisfies Eq. (98) above if this matching degree is greater or equal to the threshold
specified by the operator level condition.

Further, a formula in Buckles and Petry’ fuzzy domain calculus is defined in a
similar way to the definition of a domain calculus formula (Section 2). Specifi-
cally, it is one of the following expressions (Buckles et al. 1986):

1. An atomic formula
2. ψ1 ∧ ψ2 with < level condition >, ψ1 ∨ ψ2 with < level condition >, ¬ ψ with <

level condition >
3. ∃X(A) ψ with < level condition >, ∀X(A) ψ with < level condition >
4. (ψ), [ψ]

where ψ, ψ1, ψ2 are formulas, X is a domain variable associated to attribute A, and
level condition applies to any free or bound variable in the formulas ψi. The au-
thors introduce also the concept of the safe formula in a way analogous to the
crisp case. Then, they prove that the expressive power of their DRC is at least the
same as the previously discussed fuzzy relational algebra (see Proposal P4).

P6. Shenoi and Melton (Shenoi and Melton 1989) extended the fuzzy relational
database model of Buckles and Petry (see Proposals P4 and P5) by relaxing the
transitivity property required for the similarity relation. They replaced the similar-
ity relation with a proximity relation and showed that general properties of the
model are preserved. This provides the user with the freedom to define the close-
ness among the different elements of the domain. For example (Shenoi and Mel-
ton 1989), if one is close to two with a degree of 0.8 and two is close to three also
with a degree of 0.8, then a degree of 0.6 between one and three would not be al-
lowed if we used a similarity relation: the max-min transitivity would impose a
value equal or higher to 0.8 which would contradict common sense.

Further, Shenoi et al (Shenoi et al. 1990) proposed a more general model, an
equivalence classes model. The model is based on the following two assumptions
(Shenoi et al. 1990):

1. the existence of partitions at the desired level of precision for each non-empty
subset of a domain

2. the total ordering of partitions related to the same domain but for different pre-
cision levels is provided by the concepts of a finer and coarser partition.

38

Assumption 1 is motivated by the postulate that a partitioning of a domain
should be defined separately for each subset of elements currently appearing in a
database. The authors call such a subset a temporal domain (it is also called an ac-
tive domain).

Assumption 2 expresses an intuitive requirement that elements indistinguish-
able (i.e., falling into the same equivalence class) at a given level of precision
should be still indistinguishable at any lower level of precision. Thus, any two
partitions of the same temporal domain taken at different precision levels should
be in a coarser/finer relation.

This is an abstract model (Shenoi et al. 1990) because it does not specify how
to partition the domain: the users have a freedom to choose how to define the
equivalence classes (information chunks). For instance, Buckles and Petry
(Buckles and Petry 1985) used similarity relations on scalar domains while Shenoi
and Melton (Shenoi and Melton 1989) used proximity relations on scalar do-
mains. In fact, Shenoi et al. (Shenoi et al. 1990) show that any partitions satisfy-
ing assumptions 1 and 2 guarantee that the fundamental properties of the rela-
tional model are preserved.

They also proposed a fuzzy relational algebra for this model. For example
(Shenoi et al. 1990), Fig. 9 shows a fuzzy relation of candidates to a political elec-
tion storing the name, age and political view of the candidates and the associated
algebra.

Name Age View
{Cook} {39} {Arch_Conservative}
{Dean} {68} {Ultra_Liberal}
{Hall} {42} {Conservative}
{Kane} {54} {Moderate}
{Luce} {73} {Liberal}
{Mann} {50} {Moderate}
{Page} {65} {Liberal}
{Rudd} {58} {Conservative}

 c) abstract_candidates (α’ = (α’Name, α’Age, α’View)).

Name Age View
{Cook} {39} {Arch_Conservative}

Name Age View
{Dean} {68} {Ultra_Liberal}
{Kane} {54} {Moderate}
{Luce} {73} {Liberal}
{Mann} {50} {Moderate}
{Page} {65} {Liberal}
{Rudd} {58} {Conservative}

a) candidates (α = (αName, αAge, αView)).

d) revised_candidates (αR = (αName, αAge, αView))
 ← candidates – questionable_candidates

Name Age View
{Cook, Hall} {39, 42} {Arch_Conservative, Conservative}
{Dean, Luce, Page} {65, 68, 73} {Ultra_Liberal, Liberal}
{Kane, Mann} {50, 54} {Moderate}
{Rudd} {58} {Conservative}

b) questionable_candidates (α = (αName, αAge, αView)).

Fig. 9. Example from (Shenoi et al. 1990): algebra for
the equivalence classes’ model

The scheme of a fuzzy relation is defined by adding the set of precision levels

αR used for each attribute:

 Page 39

αR = (αName, αAge, αView) (101)

In Fig. 9(a-b), the partition of temporal domains into equivalence classes of

identical elements results in partitions whose equivalence classes are sets with
only one element, corresponding to the special case of the relational model. In
fact, since each component of a tuple is a subset of an equivalence class in the
partition of its respective attribute, each attribute value in the relation candidates
must have only one element. For example, for attribute Name we can have the fol-
lowing partition:

PName : {{Cook},{Dean},{Hall},{Kane},{Luce}, {Mann}, {Pa ge},
{Rudd}}

(102)

Partitions PName, PAge, PView have implicit precisions, respectively, αName, αAge, αView

(see relation candidates in Fig. 9a)). On the other hand, the following partitions:

P’Name : {{Cook, Dean, Hall, Kane, Luce, Mann, Page, Rudd}} (103)

P’Age : {{39,42}, {50,54,58}, {65,68,73}} (104)

P’View : {{Ultra_Liberal, Liberal},{Moderate},{Conservative,
Arch_Conservative}}

(105)

create equivalence classes of more or less identical elements. We can see that the
precision of P’Name, α’ Name, makes all elements of the temporal domain DName to be
indistinguishable whereas the precision of partitions P’Age and P’View, α’ Age and
α’ View, split temporal domains DAge and DView into three equivalent classes. It is ob-
vious that α’ ≤ α means that the corresponding partition P’ is coarser than the cor-
responding partition P.

Then, if we decrease the precisions α (identical) for attributes of relation can-
didates (see Fig. 9a)) to the new precisions α’ (more or less identical), redundant
tuples will appear which must be merged. Fuzzy relation abstract_candidates (see
Fig. 9c)) shows the result of merging the tuples in relation candidates considering
the new precisions α’ Name, α’ Age, α’ View. We can see, for example, that candidates
Kane and Mann are equivalent and hence merged because their names, ages and
political views are considered equivalent (see partitions P’Name, P’Age and P’View) but
Rudd is not equivalent to Kane and Mann because Rudd’s political view (conser-
vative) is not equivalent to Kane and Mann’ political view (moderate). Note that
moderate and conservative do not belong to the same equivalence class in parti-

40

tion P’View. Therefore, Rudd is not redundant and therefore is not merged with any
other candidate in candidates’ relation.

Finally, the difference operation between the fuzzy relations candidates (see
Fig. 9a)) and questionable_candidates (see Fig. 9b)), using precision levels α’ Name,
α’ Age, α’ View, is shown in Fig. 9d). We can see that the two tuples, corresponding to
candidates Cook and Hall, from fuzzy relation candidates are missing in the re-
sult, i.e. fuzzy relation revised_candidates. Besides the tuple appearing in relation
questionable_candidates (Cook’s tuple), an extra tuple corresponding to candidate
Hall is also removed from candidates because candidate Hall is equivalent to
candidate Cook under the more or less identical precision (see P’Name, P’Age, P’View).

G3 Hybrid models

P7. Medina et al (Medina et al. 1994) proposed a fuzzy database model, GEFRED
(generalized fuzzy relational database) that tries to integrate features of both the
possibilistic and similarity based models. The data is represented with generalized
fuzzy relations that take into account imprecision as well as uncertainty of infor-
mation. The latter is dealt with via a compatibility degree associated to each at-
tribute value. More precisely, a generalized fuzzy relation R is composed of two
sets (Medina et al. 1994): R = (H,B), where H (Head) is the set:

H = {(A1 : DG1 [,C1]), (A2 : DG2 [,C2]), ..., (An : DGn [,Cn]) } (106)

and B (Body) is the set:

B = {(A1 : di1 [,ci1]), (A2 : di2 [,ci2]), ..., (An : din [,cin]) } (107)

where Aj (j = 1…n) is the j-th attribute, DGj (j = 1…n) is the family of all possibil-
ity distributions defined over the domain of attribute Aj, which is called a general-
ized fuzzy domain; Cj is the compatibility attribute of attribute Aj, which may be
optional; and dij is the value of attribute Aj in tuple i and cij (j = 1…n) is the com-
patibility degree of value dij, which is a value in the interval [0,1]. For example,
Fig. 10b) (adopted from (Medina et al. 1994)) shows a generalized fuzzy relation
with attributes NAME, ADDRESS, AGE, PRODUCTIVITY, SALARY and
compatibility attribute CAGE. The compatibility attributes associated with other
attributes are equal to one and, therefore, they are not shown.

Medina et al (Medina et al. 1994) defined an algebra, a generalized fuzzy rela-
tional algebra, to manipulate information stored in the fuzzy database. Next, we
will illustrate the selection operation, which is called a generalized fuzzy selection.
It is based on a simple condition θG(Aj,a)≥α, where θG is a comparison operator
(generalized fuzzy comparator); α is a compatibility threshold (α ∈ [0,1]), and a
is a constant. Comparison operator θG is defined as:

 Page 41

θG : DGj × DGj → [0,1] (108)

()
() () ())', ,min(sup)',(2121

, 21

dd,dd
kk DDdd

G ππθππθ
×∈

=

(109)

where π and π’ are possibility distributions and θ can be:

• A classical comparison operator such as =, ≠, >, ≥, <, ≤;
• A fuzzy comparison operator such as approximately equal, much greater than,

etc;
• A similarity comparison operator which is defined using a similarity relation on

scalar data.

 b) Relation S = σ=(AGE,Old) ≥ 0.6 (Emp).

a) The generalized fuzzy relation Emp

H Name Address Age CAge Productivity Salary
B Antonio Reyes Católicos Middle 0.75 Fair 100000

 Francisco P. A. Alarcón Old 1 Excellent 150000

d) Labels definitions for attribute Age.

H Name Address Age Productivity Salary Department
B Antonio Reyes Católicos Middle Fair 100000 Production

 Francisco P. A. Alarcón Old Excellent 150000 Comercial
 Luis Recogidas {.8/30,1/

31}
Good 110000 Production

 Juan Carlos Camino Ronda Young Bad 90000 Production
 Julia Puerta Real Young Good 130000 Comercial
 Javier Gran Vía [30,35] Fair 105000 Human Resources

1

16 25 30 35 40 45 50 55 65 80 0

YOUNG MIDDLE OLD

AGE

 c) Relation R: departments with at least one
 bad (≥ 0.5) employee.

H Department CDepartment
B Production 1 S1
 Human resources 0.5 S2

Fig. 10. Example from (Medina et al. 1994):
algebra for the GEFRED model

In fact, Eq. (109) is similar to Eq. (80) used while querying possibilistic data-

bases. A new element is here an explicitly stated threshold value which resembles
queries in the similarity based model. Compatibility degrees of all involved attrib-

42

utes require a special treatment in the matching degree calculation. In fact, these
compatibility degrees correspond to partial matching degrees that are immediately
aggregated to an overall matching degree in other models. For example, the selec-
tion σ=(AGE,old) ≥ 0.6(Emp) of relation Emp (see Fig. 10a)) using the condition
=(AGE,old) ≥ 0.6 results in relation S (see Fig. 10b)). We can see from the defini-
tion of label OLD (see Fig. 10d)) that tuples corresponding to employees Luis (his
age is 30 or 31), Javier (his age is between 30 and 35) do not belong to S because
their compatibility degree CAGE is zero and hence the condition is not satisfied. The
same is true for tuples corresponding to employees Juan Carlos and Julia, which
are YOUNG (see Fig. 10d)). Finally, the compatibility degrees for tuples corre-
sponding to employees Antonio and Francisco are computed from Eq. (109).

P8. Galindo et al (Galindo et al. 1999) extended the GEFRED model with a fuzzy
domain relational calculus (FDRC) for querying fuzzy relational databases. The
FDRC language is described next.

Galindo et al.’s fuzzy domain calculus comprises the following atomic formu-
las (Galindo et al. 1999):

1. R(X1, X2, ..., Xn) ≥ α, where R is predicate symbol corresponding to a general-
ized fuzzy relation with n attributes, and each Xi is a constant or a domain vari-
able. This atom requires that the tuple (X1, X2, ..., Xn) belongs to a relation cor-
responding to R to a degree higher or equal α. For a given instantiation of
variables Xi this degree of membership is computed as follows:

2.
()crc

ncmr
n XdXXXR ,),...,,(minmax

,...,1,...,1
21 ==

== (110)

where m is the number of tuples in relation corresponding to R, = is a general-
ized fuzzy comparator defined by Eq. (109). Thus, the membership degree of a
given tuple (X1, X2, ..., Xn) – note that now Xi denotes a constant originally pre-
sent in the atomic formula or a value substituting the domain variable – is
computed by comparing this tuple with all tuples of relation corresponding to
the predicate symbol R. This comparison is done using a fuzzy comparator for
all attributes separately; drc denotes a value of the c-th attribute in the r-th tuple.
Then, the total result of comparison is taken as the minimum of these per-
attribute comparisons. A tuple of the relation for which this maximum value is
attained is referred to as the most similar tuple.
The fulfillment of threshold α is a value in the interval [0,1] that is the mini-
mum value admissible for R(X1, X2, ..., Xn) in order to make the atom true.

3. θG(X,Y) ≥ α, where θG is a generalized fuzzy comparator, and X and Y are con-
stants or domain variables. This atom expresses that the value X is related to
the value Y by the fuzzy comparator θG to a certain truth degree, which is
greater or equal to α.

 Page 43

Examples of fuzzy atoms are R(X1, Good, X3) and =(X1,Good) ≥ 0.9. In the first
case, the threshold is omitted which means that its value is equal to one.

Further, a formula in Galindo et al.’s fuzzy domain calculus is defined in a
similar way to the definition of a domain calculus formula (Section 2). Specifi-
cally, it is either an atomic formula or one of the following expressions: ¬ψ1, ψ1 ∧
ψ2, ψ1 ∨ ψ2, ψ1 ⇒ ψ2,∃X ψ1(X),∀X ψ1(X), where ψ1 and ψ2 are fuzzy formulas and
X is a domain variable. Afterwards, they demonstrate an expressive power of
FDRC proving that any expression in the fuzzy relational algebra has an equiva-
lent expression in FDRC.

Observe that so far we are still operating within the framework of classical
logic – due to the threshold value α in an atomic formulae, they are true or false.
A possible partial matching is preserved using the concept of a compatibility de-
gree. The result of a query is a set of tuples satisfying it – a new generalized rela-
tion. Each attribute value of this new relation may be associated with a compati-
bility degree expressing how well this specific value matches the query. This
degree is computed by a matching function γ which takes three arguments: a for-
mula (query) ψ, a tuple ti = (di1,di2,…,din), and X, a domain variable (attribute) for
which a compatibility degree is to be computed. This may be formally described
as:

γ(ψ, ti, X) ∈ [0,1] ∪ λ (111)

Value λ is a value not belonging to [0,1] that asserts that degree γ is not appli-

cable or meaningless.
Function γ(ψ,ti,X) is defined depending on the structure of ψ. There are four

cases: ψ is an atomic formula, a negation, a disjunction or a formula with an exis-
tential quantifier (Galindo et al. 1999).

When ψ is an atomic formula of type R(X1, X2, ..., Xn,K) ≥ α we have:

(112)

where K is the list of constants present in ψ, the values R(K) and R(ti) are com-
puted using Eq. (110); X = Aj indicates that variable X is an attribute Aj in R; cij is
the value of the compatibility attribute Cj for the tuple most similar to ti; if there is
no cij associated with this most similar tuple, then cij is assumed to be equal 1.0.

The atomic formula θG (Xj,Y) ≥ α is evaluated as:

()()

 =

≥

otherwise ,

constant a is if),,(

 if ,),(

 = ,,,

λ

θ

θ

αθγ jjG

iijG

ijG XYX

XXYd

XtYX (113)

()1 2

(), if there are no variables in

 , , min{ , ()}, if

, otherwise
n i ij i j

R K

R(X , X , ..., X , K) t X = c R t X A

ψ
γ α

λ

≥ =

44

The evaluation of the negation and disjunction expressions is done using the
complement and maximum operators, respectively (see (17)-(18)). On the other
hand, for formula ψ expressed as ∃ Xn+1 (ψ1 (X1, X2, ..., Xn, Xn+1)):

()()
() ()

()()()XtdXXXtXX inin
DOMd

in
ni

,,,,...,= ,,,..., 1111 max
1

+
∈+

ψγψγ
ψ

 (114)

where DOM(ψ) is the set of all symbols that appear in formula ψ or in a tuple of a
relation appearing in ψ. The remaining expressions, that is, the conjunction, the
implication, and the universal quantifier can be expressed in an equivalent form
using the negation, the disjunction and the existential quantifier. Then, the result
we obtain for a general query {X1, X2, …, Xn | ψ(X1, X2, ..., Xn)} is a generalized re-
lation R (see Eqs. (106)-(107)) that is computed using the following two steps
(Galindo et al. 1999):

1. Compute all the tuples (dr1,…,drn) that make true the formula ψ(dr1,…,drn);
2. The compatibility values crj (j=1,…,n) for each compatibility attribute Cj, corre-

sponding to the r (r = 1, …, m) tuples of R computed in 1., are computed as:

crj = γ(ψ(X1,…,Xn),tr,Xj) (115)

where tr = (dr1,…,drn) is the r-th tuple of relation R. If crj = λ or crj = 1 for all r =
1, …, m, the attribute Cj is removed from R.

For example, the query “show the departments with at least one bad employee
(with a degree greater than or equal to 0.5) “ may be expressed in FDRC as:

{ d | ∃n, a, ag, p, s (Emp(n,a,ag,p,s,d) ∧ =(p,Bad) ≥ 0.5)} (116)

Which, considering the fuzzy relation in Fig. 10a), produces the resulting fuzzy
relation in Fig. 10c). Further, the value C1Department is computed in the following way:

C1Department = γ (ψ,t1,d) = ∃n, a, ag, p, s (γ (Emp(n,a,ag,p,s,d),t1,d) ∧
 ∧ γ (=(p,Bad) ≥ 0.5,t1,d))
 = max {γ (Emp(Antonio, Reyes Católicos, Middle, fair, 100000,
 d), t1,d) ∧
 ∧ γ(=(fair,Bad) ≥ 0.5,t1,d),
 γ (Emp(Luis, Recogidas, {.8/30, 1/31}, good, 110000, d),t1,d) ∧
 ∧ γ(=(good, Bad) ≥ 0.5,t1,d),
 γ(Emp(Juan Carlos, Camino Ronda, Young, Bad, 90000, d),t1,d) ∧

 ∧ γ(=(Bad, Bad) ≥ 0.5,t1,d)}
 = max {min(1,0.5), min(1,0), min(1,1)} = max {0.5, 0, 1} = 1

 Page 45

Note that the existential quantifier (see Eq. (114)) is replaced with the values of

tuples such that department = production (t1). Then, there is computed the match-
ing degree for those tuples (three) and finally the maximum of these degrees is
considered.

Galindo et al (Galindo et al. 2000) propose also the inclusion of fuzzy quantifi-
ers in the FDRC language just described.

P9. Galindo et al (Galindo et al. 1998) implemented the FRDB model, GEFRED,
on the crisp DBMS Oracle and a FQL, fuzzy SQL (FSQL). They extended the
SELECT command of SQL in order to allow for more flexible conditions by
choosing between possibility and necessity within fuzzy comparators; retrieving
the most (least) important tuples using fulfillment thresholds or allowing fuzzy
constants in the right side of the condition. More precisely, the main functional-
ities added are (Galindo et al. 1998):

1. Linguistic labels. These labels can be defined for two types of attributes: attrib-
utes with an ordered domain or attributes with a scalar domain. In the first case,
the labels are defined as trapezoidal possibility distributions and, in the second
case, a similarity relation between the labels of the attribute is defined.

2. Fuzzy comparators. They extend the usual comparators =, >, ≥, <, ≤ providing
comparators that have two forms, corresponding to the possibility and the ne-
cessity cases. For example, the operator FEQ evaluates the possibility of two
attributes (or one attribute and a constant) being equal using Eq. (80) (or Eq.
(76)). And the NFEQ operator evaluates the necessity of two attributes (or one
attribute and a constant) being equal using Eq. (81) (or Eq. (77)). Note that
FEQ and NFEQ are instances of the generalized fuzzy comparator θG. Addi-
tionally, they provide the fuzzy comparators much greater than (MGT,
NMGT) and much less than (MLT, NMLT).

3. Fulfillment thresholds (α). They are specified with the syntax:

<condition> [THOLD] α (117)

which is equivalent to having THOLD replaced by ≥, and where the reserved
word THOLD may be substituted by a crisp comparator (=, <, …), modifying
the meaning of the condition.

4. Function CDEG(<attribute>) shows a column with the compatibility degree for
the argument attribute, corresponding to the compatibility degree of the condi-
tions in which the attribute appears. Function CDEG(*) shows the compatibil-
ity degree for all the fuzzy attributes appearing in the condition. If we want to
see the compatibility columns for all attributes and the compatibility degree of
the whole tuples, we will use the % character in the SELECT clause (like SQL
does for the * character).

5. Fuzzy constants. FSQL allows for the use of the following constants:
UNKNOWN, UNDEFINED, NULL, $[a,b,c,d], $label, [n,m], #n. $[a,b,c,d] is

46

a fuzzy trapezoid function with a ≤ b ≤ c ≤ d. $label is a linguistic label (as de-
scribed above); [n,m] is an interval, for which a = b = n and c = d = m; and #n
means approximately n, in which the fuzzy trapezoid is replaced by a triangle
with b = c = n and n – a = d – n.

6. Condition with IS. A condition,

<Fuzzy_Attribute> IS [NOT] (UNKNOWN | UNDEFINED |
NULL)

(118)

is true (without NOT) when the fuzzy attribute value is equal to the fuzzy con-
stant on the right.

For example, the query:

Q8 - Find the Spanish cities with more than “around 500 thousands” inhabi-

tants

may be expressed in FSQL as (Galindo et al. 1998):

SELECT city, CDEG(inhabitants)
FROM Population
WHERE country = ’Spain’ AND
 inhabitants FGEQ $[200,350,650,800] .75 AND
 inhabitants IS NOT UNKNOWN

(119)

where FGEQ is the fuzzy comparator extending the crisp ≥ comparator;
$[200,350,650,800] is a fuzzy constant, and .75 is a fulfillment threshold requir-
ing that the condition on the number of inhabitants is satisfied at least to the de-
gree 0.75. Note that two columns would be displayed: the name of a city and the
degree to which its number of inhabitants is greater or equal to around 500 thou-
sands. The cities with unknown number of inhabitants are excluded.

6 Conclusion

In the last two decades, imprecision (fuzziness) and uncertainty has been studied
in the context of relational DBMS, in particular in the area of querying and in the
area of modeling and storing imprecise and uncertain data. The first area has led
to the appearance of increasingly flexible query languages (FQLs) which provide
more human consistent interfaces in comparison to the classical query languages,
by using fuzzy sets theory. In the second area, fuzzy sets theory is used to extend

 Page 47

the relational database model, leading to what are usually called fuzzy relational
database models, and on the flexible querying of the resulting models.

We introduced two taxonomies for FQLs within the context of relational data-
base models to organize the field and to offer a structured view of the topic. One
taxonomy organizes the research on FQLs for crisp relational databases and an-
other organizes the research on fuzzy relational databases. Both taxonomies pro-
vide a structured view of the main research topics studied and highlight the main
differences and similarities between approaches. We believe that our contribution
in organizing the field of flexible query languages in relational databases can shed
some light on the most relevant proposals in the area, as well as guide designers
and interested users in understanding and selecting the best approaches to suit
their aims.

References

Baldwin JF, Coyne MR, Martin TP (1993) Querying a database with fuzzy attrib-
ute values by iterative updating of the selection criteria. In: Proceedings of
International Joint Conference on Artificial Intelligence (IJCAI'93)

Baldwin JF, Martin TP, Pilsworth BW (1995) FRIL - Fuzzy and evidential rea-
soning in artificial intelligence. John Wiley & Sons, Inc, New York

Bosc P (1999) Fuzzy Databases. In: Bezdek J, Dubois D, Prade H (eds) Fuzzy sets
in approximate reasoning and information systems, The Handbooks of
Fuzzy Sets Series. Kluwer Academic Publishers, pp 403-468

Bosc P, Lietard L, Pivert O (2000) About ill-known data and equi-join operations.
In: Larsen HL, Kacprzyk J, Zadrozny S, Andreasen T, Christiansen H (eds)
Flexible query answering systems. Recent advances. Physica-Verlag, Hei-
delberg New York, pp 65-74

Bosc P, Pivert O (1992) Fuzzy querying in conventional databases. In: Zadeh LA,
Kacprzyk J (eds) Fuzzy logic for the management of uncertainty. John
Wiley & Sons, pp 645-671

Bosc P, Pivert O (1993) An approach for a hierarchical aggregation of fuzzy
predicates. In: Proceedings of 2nd IEEE International Conference on Fuzzy
Systems (FUZZ-IEEE´93), USA, pp 1231-1236

Bosc P, Pivert O (1995) SQLf: A relational database language for fuzzy querying.
IEEE Transactions on Fuzzy Systems 3: 1-17

Bosc P, Pivert O (1997) Fuzzy queries against regular and fuzzy databases. In:
Andreasen T, Christiansen H, Larsen HL (eds) Flexible query answering
systems. Kluwer Academic Publishers, pp 187-208

Bosc P, Pivert O (1997) On representation-based querying of databases containing
ill -known values. In: Proceedings of International Symposium on Method-
ologies for Intelligent Systems (ISMIS' 97), pp 477-486

48

Bosc P, Pivert O, Lietard L (2001) Aggregate operators in database flexible que-
rying. In: Proceedings of 9th IEEE International Conference on Fuzzy Sys-
tems (FUZZ-IEEE'2001), Melbourne, Australia, pp 1231-1234

Bosc P, Pivert O, Lietard L (2003) On the comparison of aggregates over fuzzy
sets. In: Bouchon-Meunier B, Foulloy L, Yager RR (eds) Intelligent systems
for information processing. From representation to applications. Elsevier, pp
141-152

Buckles BP, Petry FE (1985) Query languages for fuzzy databases. In: Kacprzyk
J, Yager RR (eds) Management decision support systems using fuzzy sets
and possibility theory. Verlag, TUV Rheinland, pp 241-251

Buckles BP, Petry FE, Sachar HS (1986) Design of similarity-based relational da-
tabases. In: Prade H, Negoita CV (eds) Fuzzy logic in knowledge engineer-
ing. Verlag TUV Rheinland, pp 3-7

Codd EF (1970) A relational model of data for large shared data banks. Commu-
nications of the ACM 13(6): 377-387

Dubois D, Prade H (1990) Measuring properties of fuzzy sets: A general tech-
nique and its use in fuzzy query evaluation. Fuzzy Sets and Systems 38(2):
137-152

Dubois D, Prade H (1997) Using fuzzy sets in flexible querying: why and how?.
In: Andreasen T, Christiansen H, Larsen HL (eds) Flexible query answering
systems. Kluwer Academic Publishers, pp 45-60

Fodor J, Yager RR (2000) Fuzzy set-theoretic operators and quantifiers. In: Du-
bois D, Prade H (eds) Fundamentals of fuzzy sets. Kluwer Academic Pub-
lishers, 125-193

Galindo J; Medina JM; Aranda GMC (1999) Querying fuzzy relational databases
through fuzzy domain calculus. International Journal of Intelligent Systems
14(4): 375-411

Galindo J, Medina JM, Cubero JC, García MT (2000) Fuzzy quantifiers in fuzzy
domain calculus. In: Proceedings of 8th International Conference on Infor-
mation Processing and Management of Uncertainty in Knowledge-Based
Systems (IPMU´2000), Spain, pp 1697-1702

Galindo J, Medina JM, Pons O, Cubero JC (1998) A server for fuzzy SQL que-
ries. In: Andreasen T, Christiansen H, Larsen HL (eds) Flexible query an-
swering systems. LNAI: 1495, Springer, pp 164-174

Kacprzyk J, Zadrozny S (1995) FQUERY for Access: fuzzy querying for Win-
dows-based DBMS. In: Bosc P, Kacprzyk J (eds) Fuzziness in database
management systems. Physica-Verlag, Heidelberg, pp 415-433

Kacprzyk J, Zadrozny S (1997) Implementation of OWA operators in fuzzy que-
rying for Microsoft Access. In: Yager RR, Kacprzyk J (eds) The ordered
weighted averaging operators: theory and applications. Kluwer, Boston, pp
293-306

Kacprzyk J, Zadrozny S (1999) Fuzzy querying via WWW: implementational is-
sues. In: Proceedings of 7th IEEE International Conference on Fuzzy Sys-
tems (FUZZ-IEEE'1999), Seoul, Korea, pp 603-608

 Page 49

Kacprzyk J, Zadrozny S (2000) On a fuzzy querying and data mining interface.
Kybernetika 36: 657-670

Kacprzyk J, Zadrozny S (2000) On combining intelligent querying and data min-
ing using fuzzy logic concepts. In: Bordogna G, Pasi G (eds) Recent re-
search issues on the management of fuzziness in databases. Physica-Verlag,
Heidelberg New York, pp 67-81

Kacprzyk J, Zadrozny S, Ziolkowski A (1989) FQUERY III+: a 'human-
consistent` database querying system based on fuzzy logic with linguistic
quantifiers. Information Systems 6: 443-453

Kacprzyk J, Ziolkowski A (1986) Database queries with fuzzy linguistic quantifi-
ers. IEEE Transactions on Systems, Man and Cybernetics SMC 16: 474-479

Kerre EE, De Cock M (1999) Linguistic modifiers: an overview. In: Chen G,
Ying M., Cai K-Y (eds) Fuzzy logic and soft computing. Kluwer Academic
Publishers, pp 69-85

Klir GJ, Folger TA (1988) Fuzzy sets, uncertainty and information, Prentice-Hall.
Lacroix M, Lavency P (1987) Preferences: putting more knowledge into queries.

In: Proceedings of 13rd International Conference on Very Large Databases
(VLDB' 87), Brighton (GB), pp 217-225

Liu Y, Kerre EE (1998) An overview of fuzzy quantifiers (I). Interpretations.
Fuzzy Sets and Systems 95: 1-21

Medina JM, Pons O, Vila MA (1994) GEFRED: a generalized model of fuzzy re-
lational databases. Information Sciences 76(1-2): 87-109

Petry FE (1996) Fuzzy databases: principles and applications. Kluwer Academic
Publishers

Prade H, Testemale C (1984) Generalizing database relational algebra for the
treatment of incomplete or uncertain information and vague queries. Infor-
mation Sciences 34: 115-143

Prade H, Testemale C (1987) Representation of soft constraints and fuzzy attrib-
ute values by means of possibility distributions in databases. In: Bezdek JC
(ed) Analysis of fuzzy information, vol. II, CRC Press. pp 213-229

Raju KVSVN, Majumdar AK (1988) Fuzzy functional dependencies and lossless
join decomposition of fuzzy relational database systems. ACM Transactions
on Database Systems 13: 129-166

Ramakrishnan R, Gehrke J (2000) Database management systems, McGraw-Hill.
Ribeiro RA (1993) Application of support logic theory to fuzzy multiple attribute

decision problems, University of Bristol, UK
Ribeiro RA, Moreira AM (1999) Intelligent query model for business character-

istcs. In: Proceedings of IEEE/WSES/IMACS CSCC'99 Conference, Greece
Ribeiro RA, Moreira AM (2003) Fuzzy query interface for a business database.

International Journal of Human Computer Studies 58(4): 363-391
Schmucker KJ (1984) Fuzzy sets, natural language computations, and risk analy-

sis, Computer Science Press
Shenoi S, Melton A (1989) Proximity relations in the fuzzy relational database

model. Fuzzy Sets and Systems 31: 285-296

50

Shenoi S, Melton A, Fan LT (1990) An equivalence classes model of fuzzy rela-
tional databases. Fuzzy Sets and Systems 38: 153-170

Tahani V (1977) A conceptual framework for fuzzy query processing: a step to-
ward very intelligent database systems. Information Processing and Man-
agement 13: 289-303

Takahashi Y (1991) A fuzzy query language for relational databases. IEEE Trans-
actions on Systems, Man and Cybernetics SMC 21: 1576-1579

Takahashi Y (1995) A fuzzy query language for relational databases. In: Bosc P,
Kacprzyk J (eds) Fuzziness in database management systems. Physica-
Verlag, Heidelberg, pp 365-384

Ullman JD (1982) Principles of database systems, Computer Science Press.
Umano M (1982) FREEDOM-0: a fuzzy database system. In: Gupta M, Sanchez

E (eds) Fuzzy information and decision processes. North-Holland, Amster-
dam, pp 339-347

Umano M, Fukami S (1994) Fuzzy relational algebra for possibility-distribution-
fuzzy relational model of fuzzy data. Journal of Intelligent Information Sys-
tems 3: 7-27

Yager RR (1994) Interpreting linguistically quantified propositions. International
Journal of Intelligent Systems 9: 541-569

Zadeh LA (1965) Fuzzy sets. Information and Control 8: 338-353
Zadeh LA (1975) The concept of a linguistic variable and its application to ap-

proximate reasoning - II. Information Sciences, 8: 219-269
Zadeh LA (1978) PRUF -a meaning representation language for natural lan-

guages. International Journal of Man-Machine Studies 10: 395-460
Zadeh LA (1983) A computational approach to fuzzy quantifiers in natural lan-

guages. Computational Mathematics Applications 9: 149-184
Zadrozny S, Kacprzyk J (1998) Implementing fuzzy querying via the Inter-

net/WWW: Java applets, ActiveX controls and cookies. In: Andreasen T,
Christiansen H, Larsen HL (eds) Flexible query answering systems. LNAI:
1495, Springer, Berlin Heidelberg, pp 382-392

Zemankova-Leech M, Kandel A (1984) Fuzzy relational databases - A key to ex-
pert systems. Koln, Germany, TUV Rheinland.

